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ABSTRACT

This review highlights various aspects of current palladium

membrane research and serves as a comprehensive bibliography

covering palladium membrane preparation methods and applica-

tions. There are many promising uses for palladium membranes,

although widespread use of the available technologies is con-

strained primarily by the high cost of palladium, lack of durabil-

ity due to hydrogen embrittlement, and susceptibility to fouling.

Various researchers in the field are tackling these problems and

fabricating thinner palladium alloy composite membranes that

better withstand contaminantion and thermal cycling. What has

been accomplished to address these issues and the directions

presently being explored are discussed.

Key Words: Palladium membrane; Membrane reactor; Alloy;

Hydrogen diffusion

1. INTRODUCTION AND BACKGROUND

Hydrogen separating membranes made of palladium alloys have been

developed over the past 50 years into a technology that in some instances is

used in practice. Illustrations include the ultra-purification of hydrogen for use

in semiconductor manufacturing processes, and hydrogen generators for

remote or small-scale usage.[1–9] Areas presently being researched include
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membrane reactors to supply hydrogen gas for fuel cells or the chemical

process industry. Palladium membranes have other important technological

ramifications as well. They can produce hydrogen gas with ppb impurity

levels for analytical instruments, for hydrogen leaks into (or removal from)

vacuum systems, or deposition processes in the computer and aerospace

industries.[5,10–17] Palladium-alloy diffusers are a key component in processes

that recover the radioisotopes of hydrogen that are used and produced in

nuclear fission and fusion reactors.[18–28] The following sections contain

important background information on palladium membranes, discussion of

state-of-the-art fabrication methods, and some details of how the technology

may be applied.

A host of reviews detail the potential uses of palladium membranes in

membrane reactors and hydrogen recovery.[29–70] There is a wealth of

information on palladium membranes found in patents.[71–76] Many of the

science and engineering aspects of metal membranes and membrane reactors

have formerly been well covered. Though there is an attempt here to avoid

redundancy, some topics addressed previously are defined here for the sake of

completeness, to elaborate on certain points, and to cite the latest publications.

In addition to an overview of palladium membrane development and uses, the

focus at hand will be on the problems that remain to be overcome and what is

being done or what should be done to resolve them. Some of the interesting

questions related to the technology will be dealt with. For example, what is the

precise influence of grainsize on hydrogen permeability through palladium?

The relationship between preparation methods and mechanical stability, as

well as other issues affecting high temperature membrane performance will

be discussed.

Pure hydrogen is a valuable industrial material and is consumed on the

order of billions of cubic meters per year.[70] Hydrogen, produced primarily by

steam reforming of hydrocarbons like natural gas, is used for hydrogenations

in the chemical process industry, iron ore reduction, as a blanket gas for

brazing, during the sintering and annealing of metals to prevent oxidation and

nitriding, as a fuel, as a coolant for power station alternators and generators,

and as a carrier gas during the doping of silicon wafers or chemical vapor

deposition (CVD) in the semiconductor industry.[5,9,52,77–84] Presently, a major

hydrogen sink is the hydrodesulfurization of fuels.[79,85] It is also used in

scientific and military balloons and as a rocket fuel.[78,86,87]

Separations account for a large fraction of energy expenditure and

capital investment in the chemical process industry. Common technologies

used for separating hydrogen consist of solvent absorption, pressure swing

adsorption (PSA), cryogenic recovery, and polymer membranes.[45,79,88–91]

Polymer membranes currently compete with the other technologies to re-

duce the hydrogen/carbon monoxide ratio in synthesis gas (syngas), or to
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recover hydrogen from purge or offgas streams in ammonia or petrochemical

plants.[43,52,90,92–95] Polymer membranes are economical in some applications,

although the higher temperatures of most chemical reactions and many waste

gas streams precludes their use, at least without process modifications such as

cooling prior to introduction to the membrane. Typically comprised of hollow

fiber modules of various kinds of polymers (such as polyimide), hydrogen

separating polymer membranes can be made very thin but are generally

confined to use at temperatures below 150�C.[96–99] In general, membrane

systems typically require lower capital investment although their main liability

is that recompression of the permeated hydrogen is usually required.[43,88]

Inorganic membranes are increasingly being utilized to separate gas

mixtures. Some gases preferentially permeate through certain metals, enabling

a permselective (dominant permeation of one species) dense metal membrane

to be formed. For example, hydrogen exclusively permeates through palladium

while oxygen permeates through silver.[100–114] This review focuses solely on

hydrogen separating metal membranes. Meanwhile, the fabrication and

characterization of porous membrane materials has also been heavily

researched in the past decade. Various materials, particularly those produced

from alumina ceramics have been thoroughly scrutinized. Zeolites or silicalite

films, with their well-defined pore sizes, have been studied for use as

hydrogen permselective molecular sieving membranes.[49,115–122]

The properties of palladium are now taken advantage of as the basis for

some high sensitivity hydrogen sensors,[123–125] and palladium sometimes

serves as a catalyst or membrane electrode in fuel cells.[126–136] Since palla-

dium is endowed with excellent catalytic properties it is a quintessential

ingredient in catalysts for the chemical industry and in automotive catalytic

converters. As a platinum group metal, its inert nature and good conductivity

has enabled the replacement of some gold microcircuit components with pal-

ladium alloys.[137] Palladium is also purported to enable the nuclear process of

cold fusion.[138]

In 1863, Sainte-Claire Deville and Troost discovered that hydrogen

permeates through palladium and then in 1866, Graham discovered the

capacity of palladium to absorb several times its volume of hydrogen at room

temperature.[139–141] The implication that palladium occludes hydrogen was

later exploited by Zelinskii at Moscow University,[58] and by Snelling who

formed hydrogen separating palladium septa circa 1916.[142] While palladium

was used in laboratories as early as the 1920’s to obtain high-purity hydrogen,

apparently, palladium membranes did not receive much commercial attention

until several companies (such as Atlantic Refining Company, Milton Roy

Co., J. Bishop and Co., Johnson Matthey Metals, Engelhard Industries, Inc.,

and Union Carbide) began using palladium membrane technology to gene-

rate hydrogen beginning in the late 1950’s.[5,45,80,83,91,135,141,143–153] Since
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then, small-scale palladium membrane modules have conveniently produced

high-purity hydrogen at remote sites and for industrial, laboratory, or mili-

tary purposes.[5,82,154,155]

One of the most promising applications of palladium membrane

technology is as a membrane reactor where chemical reaction and product

purification by separation occur simultaneously. Chemical reactions can be

carried out more efficiently in hydrogen separating membrane reactors. By

removing product from the reactor, in this case hydrogen, thermodynamically

limited reactions can be driven towards completion, significantly enhancing

conversion over the theoretical equilibrium conversion based on the compo-

sition of the reactor feed stream.[156–158] Additionally, pure hydrogen recov-

ered on the permeate side of the membrane can be utilized for other purposes.

Conversely, adding hydrogen along the length of a reactor can favorably en-

hance hydrogenation product yields.

Palladium membranes are capable of operating at much higher temper-

atures than polymer membranes, making them ideal for use as a membrane

reactor or for extracting hydrogen from high temperature gas streams. Gryaz-

nov, Pfefferle, and Wood initiated groundbreaking membrane reactor inves-

tigations where palladium membranes were used to add or remove hydrogen

from a reaction space resulting in increased yield and catalyst effective-

ness.[4,159–165] Palladium membranes are ideal for hydrogenation/dehydrogena-

tion reactions due to excellent control over hydrogen delivery or removal from

the reaction zone.[58] Ideally, an endothermic dehydrogenation and an exo-

thermic hydrogenation would be coupled or ‘‘conjugated’’ where each reaction

takes place on opposite sides of the membrane packed with catalyst.4,49,58,162 –

164,166 – 171] Thus, hydrogen and heat would be transferred most effectively, as

two products form and energy is supplied directly where it is needed.

By either adding or removing hydrogen to drive equilibrium restricted

reactions to the desired product side, reactor volume and temperature may be

lowered, fewer undesirable byproducts form through side reactions, and less

unreacted feed must be recycled, saving on downstream separation require-

ments, equipment size, and energy usage.[4,157,172–178] Accordingly, a robust

hydrogen permselective membrane has the potential to change the chemical

industry by replacing traditional reaction and separation procedures. This could

result in sizable savings in energy consumption and capital investment in

equipment. Minimizing reactor surface-to-volume ratio can be advantageous in

certain situations, for example, in a portable fuel reformer generating hydrogen

for consumption in a fuel cell that provides electricity for vehicle propulsion

(see page 66).

Although the notion of a hydrogen separator based on palladium metal

has been around for more than a century, research centering on the develop-

ment of technologically and economically feasible hydrogen separating mem-
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branes based on palladium skyrocketed in the last decade. In early work in the

United States and former Soviet Union, relatively thick-walled tubes were

employed. Up to the 1980’s, banks of membranes were comprised of palladium

alloy tubes and capillaries with wall thicknesses of at least 100 mm for struc-

tural integrity. The nearly perfect hydrogen permselectivity of thicker palla-

dium membranes enables them to provide very high purity hydrogen for use in

the semiconductor manufacturing industry or for recovering hydrogen isotopes.

Unfortunately, the cost of monolithic palladium foils and tubes is prohibitive

for most purposes. So, in order to produce a reliable and economical means of

hydrogen separation on an industrial scale, a thin ( < 20 mm thick), adherent,

nonporous, and durable palladium film must be applied to a hydrogen-perme-

able support.[144] Kikuchi and Uemiya were the first to publish a large amount

of work on palladium composites that used porous membranes as sup-

ports.[173,179–188] Over the last decade, composite palladium membranes that

couple high permselectivity with reasonable hydrogen flux have been fabrica-

ted by many researchers using a range of deposition methods and supports.[189]

Many different membrane configurations have been developed in the

attempt to minimize palladium film thickness while maintaining membrane

integrity and high hydrogen flux.[52,93] Composite membranes consist of a thin

layer of palladium on a hydrogen permeable support so that palladium films

with micron thicknesses or less are readily attainable. Very high hydrogen

permselectivity is possible if a defect-free palladium film can be deposited

onto the membrane support and a leak-free seal can be made between the inlet

and outlet connections and the composite membrane. In addition, the mem-

brane can be operated at high transmembrane pressure differentials because the

substrate provides mechanical support for the thin palladium film.

Hydrogen is costly to produce or to separate from gas mixtures such as

reactor effluent or waste streams due to the high capital and energy expen-

ditures associated with compression, heat exchange, cryogenic distillation, and

PSA. An affordable, tough, and selective hydrogen separating membrane could

significantly reduce these costs, and ultimately replace traditional unit oper-

ations or be integrated into an existing process to recover hydrogen. Recovery

of hydrogen from waste gas or purge streams (such as hydrotreater off-gas) is

a potentially large application of palladium membrane technology.[6] Such

streams are typically flared or combusted as fuel gas to provide heat for other

processes, annually consuming up to 2.5 trillion standard-cubic-feet of valua-

ble hydrogen.[90] Coal gasification or natural gas reforming combined with a

palladium membrane reactor could become a tremendous source of hydro-

gen.[93,190–194] Steam reforming, particularly of methanol, is frequently the

source of hydrogen for small-scale hydrogen generating membrane

units.[9,80,93,195,196] Production of pure hydrogen for fuel cell use could be

another important function of a palladium membrane reactor.[184] Using meth-
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anol powered fuel cell vehicles in the U.S. could conserve 2–4 million of

barrels of oil per day through increased efficiency over the internal combustion

engine.[197]

However, to be commercially viable, a membrane must possess high flux

and hydrogen permselectivity over a lifetime of years under process conditions,

in addition to being cost effective. A major shortcoming of palladium as a

membrane material is the high and fluctuating cost of this precious commodity

metal and the difficulty of fabricating defect free membranes with palladium

films on the order of microns or less. The use of palladium must be restricted

not only due to its high cost, but to maximize the flux through the metal since

permeability is inversely proportional to palladium film thickness. For example,

in order to begin to compete with state-of-the-art industrial methane steam

reforming, it has been estimated that a palladium membrane around 2 Mm thick

must be used.[88] Therefore, reducing palladium use in membrane fabrica-

tion has been a foremost consideration. Then again, it should be noted that

the palladium in diffusion modules can be reclaimed and refabricated.[135]

There are other characteristics of pure palladium that impede the use of

palladium membrane technology. These problems have been thoroughly stud-

ied but in most cases acceptable solutions have not yet been found. Long-term

stability at high temperatures (>450�C) has been a problem, mainly deacti-

vation by carbon under reaction conditions in a membrane reactor.[117,198–200]

Additionally, pure palladium may undergo a phase transition (a!b) in the

presence of hydrogen at temperatures below 300�C, corresponding to an in-

crease in lattice size as it absorbs hydrogen, leading to warping and em-

brittlement.[141,201–205] This effect can be avoided by alloying palladium to

lower the critical temperature, Tc(a, b), for the coexistence of the a and b
phases.[45,206,207] Silver, ruthenium, copper and other elements achieve this at

specific concentrations while maintaining hydrogen permeabilities comparable

to or greater than pure palladium.[30,145,146,208 – 213] Palladium is also suscep-

tible to contamination or irreversible poisoning by common constituents of

industrial streams such as sulfur.[214]

For a palladium membrane system to replace a conventional practice and

be accepted by industry, it must meet the following criteria: minimal pal-

ladium thickness; high permselectivity for hydrogen; high output per unit

volume; steady and predictable performance over a long period of time at high

temperature and pressure; adaptability to a variety of high temperature sepa-

ration and membrane reactor applications; resistance to poisoning by hydrogen

sulfide, chlorine, carbon monoxide, and hydrocarbons; and the ability to

withstand thermal cycling.[40,64,65] Despite the above hurdles, the capability of

palladium alloys to selectively diffuse hydrogen while resisting permanent

contamination nevertheless makes it an excellent candidate for large-scale

hydrogen separating membranes. Supported palladium or palladium alloy thin
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film membranes have already been demonstrated to be a suitable choice of

technology with respect to separation factor and high hydrogen throughput.

A formidable volume of work has been conducted on palladium mem-

brane reactors and palladium membranes for separating hydrogen. An under-

standing of the theoretical aspects associated with palladium membrane man-

ufacture and use such as hydrogen diffusion in metals and metal deposition

processes is essential in developing an effective membrane configuration. The

theory of hydrogen permeation in palladium is outlined in this light. Several

reviews are available[57,201,202,215] while the pertinent background information

is covered in this report.

1.1 Permeation of Hydrogen Through Metal Membranes

The importance of the palladium/hydrogen system has prompted many

studies and while the permeation of hydrogen through metals has been tho-

roughly described previously, it is revisited here as a foundation for further

discussion. Permeability, P (mol/m �Pa �s), of hydrogen through a metal is a

function of diffusivity, D (m2/s), and solubility, S (mol/m3�Pa0.5):[57,216,217]

P ¼ D � S � ðmol � m=m2 � s � Pa0:5Þ

The addition of other metals to palladium often decreases one property

but increases the other so that the net result is increased hydrogen per-

meability.[91,206,218–222] Palladium is very permeable to hydrogen but essen-

tially impermeable to other gases, so at least in theory, perfect permselectivity

can be attained. In practice, purity is limited to tens of ppb due to small

amounts of carbon and other impurities that diffuse through the metal lattice

and grain boundaries.[3,7,13,91,223–227] Many different sample preparation

methods and permeation measuring techniques have been employed to

determine the hydrogen permeability of metals.[201,202,228 – 234]

Diffusion takes place because of an activity gradient or difference in

chemical potential.[235] This is usually caused by a difference in hydrogen

partial pressure across the metal. Hydrogen permeates through solid metals via

what is termed a solution-diffusion mechanism, involving the following

steps:[214,236–241] diffusion through the boundary layer to the metal surface

from the gas; dissociative chemisorption (diatomic hydrogen molecules adsorb

on the metal surface and are separated into atomic hydrogen),[242]

H2ðgÞ $ 2HðchemisorbedÞ;

absorption into the bulk metal; diffusion to the opposite face through the metal

lattice; passage from the bulk to the surface; associative desorption (re-
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combination into molecular hydrogen); and diffusion away from the surface

into the gas.[215,243] Each process can be described by a forward and reverse

rate, for example the dissociative chemisorption of hydrogen,[244–249]

H2ðgasÞ $k1pH

k2c2
H

2HðsurfaceÞ

where k1 and k2 are the rate constants for adsorption and desorption re-

spectively, pH is the partial pressure of hydrogen, and c (mol/m3), is con-

centration of hydrogen in the metal. The overall permeation process is

influenced by the metal surface roughness, purity, annealing history, and

surface cleanliness.[215]

Assuming equilibrium between the hydrogen molecules in the gas phase

and hydrogen atoms at the gas/solid interface, the concentration of atomic

hydrogen just within the metal, cH (mol/m3), is proportional to the square root

of hydrogen pressure (Sieverts’ law),[91]

cH ¼ Ksp
n
H � ðmol=m3Þ

where, KS (mol/m3 �Pa0.5), is Sieverts’ constant and pH (Pa) is the partial pres-

sure of hydrogen in the gas phase.[91,247,250–257] Solubility of atomic hydrogen

in the lattice is described by Sieverts’ constant assuming dilute solution and

minimal interaction between hydrogen atoms.[258] Hydrogen solubility de-

creases with increasing temperature. The power dependency, n, is 0.5 because

hydrogen diffuses through the metal in the atomic form.[259] This square-root

dependence of solubility on pressure is known as Sieverts’ law. At low tem-

perature ( < 150�C) and at higher pressures (>100 Torr) there can be signifi-

cant departure from this relationship (at higher hydrogen contents).[215,260,261]

At lower temperatures and pressures ( < 103 Pa) the slow rate of desorp-

tion (recombination reaction) from the low-pressure side can hamper flux,

while adsorption-limited flux is encountered at very low hydrogen partial pres-

sure on the input side or from excessive contamination.[113,238,241,248,262–266]

The effect of surface conditions on permeation is even more evident with thin

films where dissociation and adsorption of hydrogen on the surface can

become the rate-controlling step for permeation through the metal.

External mass transfer resistance, likely to be encountered on the low-

pressure side of the membrane, can also reduce the hydrogen permeation

rate.[238,267–269] This is particularly true for very thin membranes ( < 10 mm)

supported on porous supports that offer substantial mass transport resist-

ance.[238,270–272] Consequently, n may vary between 0.5 and 1 for composite

membranes.[269,270,273] With high rates of hydrogen permeation through a

membrane, concentration polarization or a hydrogen partial pressure gradient

can reduce flux.[274,275] Also, as the metal film becomes thinner, flux tends to
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become independent of thickness, i.e. surface processes become rate con-

trolling.[276,277] Percent recovery or operation efficiency will then depend on

factors such as the hydrogen partial pressure in the feed, and bleed and sweep

(if used) gas flowrates.[2,5,135,144,145,250,278 – 283]

The surface roughness factor, ss, is a notable parameter in hydrogen

adsorption and desorption.[58,239,241,284–286] The rate of hydrogen uptake is

faster at higher effective metal surface area, perhaps because of a reduction in

activation energy for both the dissociation and recombination of molecular

hydrogen as well as an increase in the number of active sites.[215] Application

of a palladium or platinum layer consisting of very small metal particles to

reduce the kinetic limitations of the hydrogen adsorption process is a common

practice in electrochemistry and palladium membranes have been activated in

this manner as well.[221,287–289] Etching can also increase the membrane sur-

face area.[290,291] Thermally diffusing zinc, copper, or mercury into a palla-

dium-alloy membrane and then chemically removing it has increased the

catalytic surface area and increased the rate of hydrogen dissolution into the

membrane.[44,58,292–295] Methods exist for either gas phase or electrochemical

determination of roughness factor or true surface area.[296]

There is ongoing debate over the thickness of palladium film at which

surface processes become influential in determining the rate of hydrogen

permeability.[297] Hydrogen flux will be rate limited by either bulk diffusion or

the dissociation or recombination kinetics (surface processes).[38,215,298–301] A

detailed model of the permeation process through palladium was constructed

by Ward et al. using rate equations (based on the literature) for each step of

the permeation process.[238] Their results identified that for temperatures above

300�C and palladium films as thin as 1 mm, diffusion through the bulk metal is

the rate-limiting step. This is fairly consistent with the results of other

researchers[185,259] although Criscuoli et al. estimated that below 10 mm of

palladium the influence of surface processes becomes significant.[302]

Hydrogen is in both the molecular and atomic form on the surface and

exists inside the metal in the atomic state so that the value of n = 0.5 when

bulk diffusion is the rate controlling step for permeation.[214,303] The value of

n is very sensitive to the permeability measurement and Sieverts’ relationship

may not be followed for several reasons.[135,144,304–307] When hydrogen

dissociation or associative desorption replaces bulk diffusion processes as

permeation rate controlling (at lower temperatures and pressures), due to the

presence of contaminants for instance or when the membrane is very thin, n

has a higher value.[40,244,249,265,277,308–311]

Palladium is one of the most efficient metals for hydrogen adsorption,

dissociation and recombination despite being an order of magnitude less

permeable than some of the refractory metals such as tantalum, vanadium

and niobium.[6,99,312] On the other hand, these metals are less reactive for the
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dissociation of hydrogen into its atomic form and are unable to rapidly

absorb hydrogen due to passivation by oxygen and other impurities.[313–320]

Hence, a palladium film is required on both sides of a refractory metal foil

as a noble metal protective layer as well as a means for dissociating and

recombining hydrogen.[6,193,197,227,253,309,321–342]

Knudsen diffusion dominates when the mean free path of the molecule

or atom is greater than the pore diameter.[270,343,344] Then collisions with the

pore wall are of the same frequency as intermolecular collisions and the

permselectivity is determined by the ratio of the reciprocal square root of

molecular weight:[345,346]

aKn ¼
ffiffiffiffiffiffiffiffiffiffi
MW2

p ffiffiffiffiffiffiffiffiffiffi
MW1

p�
:

Here, aKn is the Knudsen separation factor and MW1 and MW2 are the

molar masses of the lighter and heavier species respectively. Except in some

special cases (uranium enrichment for example) membranes with only Knud-

sen permselectivity are generally not used industrially for gas separations.[347]

The contribution of modes of diffusion such as Knudsen or viscous flow

through defects or microcracks in the metal will also increase n.[215,346]

Diffusion of molecular hydrogen along grain boundaries or via surface dif-

fusion is proportional to pH instead of pH
0.5.[263,348] Other reasons for deviation

of permeation from half-power pressure dependency include changes in

structure, contamination, or stress in the metal induced by either hydrogen

adsorption or heat treatment.[349–355] Surface impurities reduce the sticking

coefficient and increase the activation energy for dissociative chemisorption of

hydrogen so that dissociation (or recombination on the downstream side)

becomes the rate-limiting step for permeation.[311,356–358]

In general, surface effects can be neglected and bulk diffusion is the rate

controlling process for permeation through a metal membrane. Once inside the

metal, Fick’s first law may be used to describe the steady-state permeation rate

or flux of hydrogen through the solid:[343]

J ¼ 	D
dc

dx
� ðmol=m2 � sÞ:

Substituting in the relationship for hydrogen concentration in the metal

(Sieverts’ law),[215] and assuming a homogeneous solid and low hydrogen

concentration (so that D is independent of hydrogen concentration) and

integrating, results in:

J ¼ P

l
ðpn

H;1 	 pn
H;2Þ � ðmol=m2 � sÞ

where P is the permeability (mol�m/m2�s�Pan), l (m) is the membrane thick-

ness, and pH,1 and pH,2 (Pa) are the partial pressures of hydrogen on the feed
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and permeate side respectively. Through nonlinear regression, the values of n,

P and the apparent activation energy, E (kJ/mol), can be obtained if flux data

is taken at different temperatures and pressures.[270,273] By plotting permeance

(P/l) vs. 1000/T (where T is the temperature in K), the apparent activation

energy for hydrogen diffusion through the metal can be determined through

this Arrhenius relationship.[273,304,359,360] If the film contains defects (the

permselectivity is not perfect), they should be accounted for by subtracting

their contribution to flux when calculating the true hydrogen flux through the

metal film itself. Otherwise, the flux value will be higher than actual.

Inside the metal, hydrogen occupies octahedral interstices and exists as

an electronically screened proton enveloped by a cloud of semi-bound elec-

trons.[40,202,258,361–364] Hydrogen electrons partially enter the unfilled d-band of

the metal.[220,247,365,366] The pathway for hydrogen diffusion with the lowest

energy is from one fcc interstitial octahedral site to another, probably by

diffusion through a tetrahedral site with local lattice deformation.[362,367–370]

While suitable for accurately depicting hydrogen diffusion in most

cases, the above representation of hydrogen diffusion based on Fick’s law

may be too simplistic for precise modeling, especially of nanocrystalline or

amorphous materials.[235,371,372] Hydrogen diffusivity and solubility will

change with stress and strain induced by hydrogen absorption producing a

nonlinear hydrogen concentration profile.[353,373–377] In fact, to a certain de-

gree the diffusion coefficient increases with hydrogen concentration and

hydrogen can permeate against the hydrogen concentration gradient along

lines of strain.[235,289,378–393] This has been termed uphill diffusion and it is

less pronounced at higher temperatures.[378] It is important to consider this

effect when estimating diffusion coefficients as it reduces the steady state

flux. The contribution of the negative hydrogen flux vector created by strain

gradients may be negligible at the high temperatures at which membranes

typically operate.[394–396]

In reality, a metal composite membrane on a porous support may contain

microcracks or pinholes that affect the mass transfer through it. So, it should

be considered that transport is a combination of atomic diffusion through the

metal (solution–diffusion), surface diffusion, molecular sieving, capillary con-

densation, Knudsen diffusion, ordinary or Fickian diffusion, and viscous (bulk

or Poisseuille) flow through the metal film, the porous support, and defects in

the metal film or membrane seals.[35,117,199,276,397–412] Furthermore, a porous

or semi-permeable support will often significantly lower the hydrogen per-

meability of the composite membrane whether or not the palladium coating is

continuous.[271]

The permeance of gases other than hydrogen can be quantified by con-

sidering the contributions from Knudsen diffusion, ordinary or bulk diffusion,

and viscous flow.[402,413] Quantification of the contribution of defects in the
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palladium film to hydrogen permeation through a composite membrane can be

carried out by measuring the hydrogen and inert gas fluxes through both the

composite membrane and the porous support itself. To calculate the fraction of

porous substrate not covered with palladium, the flux of inert gas through the

defects in the composite membrane (or leaks through the seal) can be com-

pared to the inert gas flux through the uncoated support. The hydrogen fluxes

through the palladium film and the defects can be estimated by using model

equations for diffusion through the porous support and the palladium (see for

example Schramm and Seidel-Morgenstern).[414]

The sort of diffusion through defects in the palladium film or in the

sealing material can be determined by conducting permeation experiments

with inert gases. The flux ratio of two different permeating gases (other than

hydrogen) will reveal the size of the pores by how near the value is to the

Knudsen separation factor.[415] Thus, the amount of hydrogen leaking through

the defects in the metal film can be projected and subtracted from flux

measurements to estimate the actual amount of hydrogen permeating through

the metal film itself.[276] The adjusted values should be used to calculate the

permeance from a plot of flux vs. p0.5. A straight line should be formed and

the deviation of the intercept from the origin will be an indication of data

accuracy.[215,416] For estimation of pore size using the flux of gases other than

hydrogen, see Mardilovich et al.[304]

Surface diffusion or spillover may play an important role in the dis-

sociation and diffusion of hydrogen through composite metal mem-

branes.[348,400,408,410,411,413,417,420] In this mechanism, atomic hydrogen is chem-

isorbed and transported on the surface of the metal film or particles.[345,421–425]

Analogously, discontinuous platinum or rhodium films deposited onto the sur-

face of metal foils increase the absorption and permeation rate.[288] In this case,

the metal granules act by dissociating molecular hydrogen into atomic hydro-

gen that spills over onto the palladium surface and is more readily ab-

sorbed.[426] Platinum group metals inside the pores of a membrane support can

also transport atomic hydrogen by surface diffusion, resulting in separation

factors much greater than those obtained from Knudsen diffusion.[400,408,417,

427 – 430] The specific contribution of this form of transport through membranes

has been qualitatively observed but remains to be quantified.

1.1.1 Permeability Measurement

Before a membrane can be tested for permeability, it must be sealed into

a permeation apparatus. This is often one of the most difficult and critical

aspects of membrane technology. Metal foils, tubes, and porous metal sub-

strates can often be brazed or welded relatively easily or sealed into a fitting
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with a soft metal ferrule.[431–433] Metal gaskets (such as copper or aluminum)

are frequently used to seal flat membranes into a permeation cell using a knife-

edge or through diffusion bonding by heating at a high enough temperature so

that the gasket and membrane interdiffuse.[354,434,435] With brittle ceramic

composite membranes however, more complicated solutions are required.

The most obvious solution to sealing problems is to keep the seal out of

the heated zone. While this may be possible in the laboratory it is impractical

for an industrial module. Obtaining a gas-tight seal at high temperatures and

pressures with interfaces between metals and porous ceramics or glass is

nontrivial. The face to be sealed must not leak or else gas will bypass the

selective metal layer and lower the hydrogen permselectivity. Sealing porous

ceramics is usually accomplished with high temperature glaze. O-rings, fer-

rules, or gaskets made of graphite are often employed in compression fittings

due to their softness and high temperature stability. With graphite, operation in

an oxidizing atmosphere up to 450�C is permissible and operation in reducing

conditions up to much higher temperatures is possible. Defects in a membrane

may often be found at the ends where there is an interface between the glazed

region and the palladium film. Quicker et al. overcame this problem by slicing

and polishing the faces of the composite membrane after palladium deposition

and using graphite seals.[436]

Alternative membrane sealing methods include cermet (ceramic–metal)

technology.[64] Porous ceramic supports can be infiltrated with a metal/metal

oxide that strengthens the ceramic and permits brazing to a metal fitting.[437]

With alumina, strong cohesion is obtained through interfacial compounds such

as Cu/Cu2O/CuAlO2.[438] It is important to obtain good adhesion and wetting

between the metal and ceramic as well as pay attention to the coefficients of

thermal expansion of the cermet and the metal fitting. Gryaznov et al. sintered

a porous ceramic membrane support with stainless steel gaskets around its

edge that had a matching coefficient of thermal expansion.[62]

During start up and shut down, the palladium membrane should be

purged with inert gas to avoid hydrogen embrittlement.[93,439] Permeability

is often measured with single gases rather than mixtures. In this case, the

ratio of hydrogen flux to that of another gas yields the ideal separation

factor, a’, or permselectivity:[304,440]

a0i=j ¼ Ji

Jj

:

Measuring the concentration of species in the permeate when mixed gas

streams are used enables the calculation of separation factor:[441]

ai=j ¼
ðCi=CjÞpermeate

ðCi=CjÞfeed

:
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There is very little evidence that mixed gas permselectivity (separa-

tion factor) differs from ideal separation factor with palladium membranes.

The possibility has been suggested that hydrogen increases separation factor

by swelling the lattice and constricting grain boundary space where other

gases may diffuse.[442] However, hydrogen has also been shown to facili-

tate the copermeation of some other gases through metal.[3,223–225] For

example, to obtain ultrahigh purity hydrogen (low ppb impurities) through a

palladium membrane, a methanator for converting carbon monoxide and

carbon dioxide to methane is required.[3] Methane is stable at the tempera-

ture of purifier operation (350–450�C) while carbon monoxide and carbon

dioxide can dissociate and the carbon diffuses through the palladium (faci-

litated by hydrogen), forming methane on the downstream side with per-

meated hydrogen.[225]

It is important to purge the apparatus thoroughly after hydrogen per-

meation experiments and before measurement of non-hydrogen gases. Other-

wise back permeation of hydrogen can actually result in a negative flux through

the membrane for some period of time and this will result in a larger apparent

separation factor.[304]

1.1.2 Effects of Contamination

The presence of surface contamination inhibits the hydrogen dissociation

and recombination reactions and thus the observed permeability.[377,443–445]

Contaminants include sulfur compounds, chlorine, carbon, carbon monoxide,

ammonia, and some metals.[199,200,214,259,301,306,443,446 – 457] When processing

hydrocarbons, sulfur species such as hydrogen sulfide and heterocyclic com-

pounds like thiophene are commonplace in many hydrocarbon streams. Sulfur

and carbon can also segregate to the palladium surface from within the metal

at high temperatures, impeding hydrogen uptake.[200] Hydrocarbons inhibit

permeability by either adsorbing on the surface or reacting to form car-

bonaceous layers at higher temperatures.[226,458,459] The degree of these ef-

fects will vary with palladium alloy composition. While hydrocarbon conta-

mination may usually be removed it can permanently change the membrane

structure.[198 – 200,460,461]

Chemisorbed surface species raise the energy barrier between the ad-

sorbed and subsurface hydrogen states as well as geometrically block ad-

sorption sites, interfering with hydrogen dissociation.[215,301,459,462–468] For

example, at coverages as low as 0.18 monolayer, carbon monoxide raises both

the hydrogen desorption energy and the activation energy for dissociation on

the surface.[466] One impurity atom may block multiple hydrogen adsorption

sites.[311,469] Small amounts of contamination on either the upstream or down-
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stream surface of the membrane can significantly reduce permeation flux

through the membrane.[263,306] In most cases, poisoning is reversible by

treatment in air, steam or hydrogen.[445,470,471]

Coating or replacing the palladium film with a more noble metal such as

platinum has successfully protected membranes from hydrogen flux reduction

due to the formation of impermeable sulfur compounds on palladium at high

temperature.[193,449,450,472] However, platinum is an order of magnitude less

permeable than palladium to hydrogen.[237] Palladium membranes are de-

stroyed by sulfur because of a large lattice expansion while the lattice constant

of platinum sulfide is only slightly different from that of the pure me-

tal.[428,429] Platinum sulfidation is more significant at lower temperatures.

Furthermore, the hydrogen flux through the platinum membrane prior to

sulfidation can be partially recovered by oxygen treatment.[428]

Palladium readily catalyzes the polymerization of hydrocarbons and

they can collect on the surface, inhibiting permeability.[226,473] Exposure to

unsaturated hydrocarbons, alcohols, or carbon monoxide amplifies this prob-

lem, mainly under reaction conditions. Oil from a vacuum pump is another

potential source of carbon.[445] Deposited carbon can diffuse into the metal

(facilitated by hydrogen), and a supersaturated solid solution of up to 13

atom % can form under the right conditions.[226,301,458,474–477] Filamentous

carbon can also be formed on the membrane surface.[461] A layer of silica or

titania on the surface of the palladium membrane may reduce carbon for-

mation.[478,479]

Chabot et al. found that carbon dioxide and methane had limited effect

on the hydrogen permeation rate through a palladium membrane, while Chen

et al. observed a 10% reduction in flux in the presence of CH4 or C2H4. In the

latter scenario there was no carbon buildup so hydrogen flux reduction was

due to chemisorbed impurity molecules interfering with the hydrogen dissocia-

tion process. Unsaturated hydrocarbons seem to be especially troublesome. For

example, propylene polymerizes especially easily, fouling the membrane

surface above 500�C.[117,199,459,480–482] Carbon can destroy the membrane,

presumably by diffusing into it or causing it to delaminate from the support

through the formation of a supersaturated solid solution.[117,199,226,474,480] The

exact mechanism for this phenomenon is unclear, although it may include the

participation of a mobile carbon/palladium entity.[200,482,483] Moreover, mor-

phology changes (fracturing and pitting) have been observed during the hy-

drogenation of ethylene at 150–200�C.[200] A thin ( < 0.5 mm) layer of sol-gel

titania (TiO2) coated on the membrane stopped the destruction by forming a

layer for hydrocarbon adsorption and reaction with spillover hydrogen from

the membrane.

Exposure of the membrane to certain metallic vapors or chlorine com-

pounds can irreversibly poison palladium, severely decreasing hydrogen per-
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meability.[306,443] Mercury from a diffusion pump or metals volatilized during

thermal treatment of a catalyst can permanently reduce the hydrogen permea-

bility of a membrane by adsorbing and diffusing into the palladium.[135,259,448,484]

Mercury can actually cause membrane corrosion.[432,485,486] To regenerate a

membrane poisoned with chlorine, steam has been effective.[443]

1.1.3 Air Treatment

Air or oxygen exposure followed by hydrogen reduction increases the

hydrogen permeability of palladium by increasing the surface area and re-

moving contaminants that inhibit hydrogen dissociation.[215,361,487–490] Oxy-

gen treatment may increase the surface area by creating palladium oxide that

is then reduced, raising the activity or number of sites for hydrogen dis-

sociation, thereby increasing the rate of hydrogen uptake.[40,288,305,306,491 – 500]

Supported palladium catalysts have been observed to undergo redispersion

upon redox treatment (at 450–500�C) and sintering in pure hydrogen (500 or

600�C).[501]

Many researchers treat palladium membranes with air as a routine

procedure for reactivation.[416,443,502–504] Either air or hydrogen treatments

have resulted in an increased catalytic activity and hydrogen permeability,

possibly due to decarburization.[359] Cycles of adsorption and desorption of

hydrogen may have an effect similar to oxygen exposure. Periodically re-

versing hydrogen flow through the membrane (backflushing) also helps to

restore flux.[6,40] Hydrogen itself may also reconstruct the surface.[505] Another

explanation for the increased permeability is that the removal of impurities

such as carbon that have segregated to grain boundaries leaves micropores.[226]

1.1.4 Influence of Microstructure on Hydrogen Permeability

The metal microstructure influences permeability as well.[238,327] Dif-

fusivity may be greater through nanostructured materials (grainsize < 50 nm)

that have a high volume fraction of grain boundaries (intercrystalline space)

than through polycrystalline metal foils.[506–508] In some cases, short-circuit

grain boundary diffusion increased the hydrogen permeability through nano-

crystalline palladium.[509–513] Some researchers have found that a high fraction

of grain boundaries, dislocations, vacancies, and voids actually offer increased

resistance to hydrogen permeation.[469] Heinze et al. found that diffusion in the

bulk of PdAg23 (grainsize>100 nm) was faster than grain boundary diffusion

(grainsize < 40 nm).[514] This result was attributed to impurities in the metal that

segregated at the grain boundaries acting as hydrogen traps. Nanocrystalline
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nickel has been found to have higher hydrogen permeability due to grain boun-

dary diffusion of hydrogen.[515–517]

Lattice defects, grain boundaries, and microvoids probably act as traps,

slowing hydrogen permeation and increasing the activation energy for diffu-

sion.[518–520] Cold working that introduces lattice defects through deformation

creates traps (such as dislocations) that increase the solubility (at low hydrogen

concentration) but reduce the diffusivity of hydrogen in the metal although

increased diffusivity is observed when these traps become filled.[229,521–532]

The a/?b transformation also causes deformation and microstrain that creates

dislocations so hydrogen solubility is increased.[229,520,533–543] Kagan et al. saw

that thermal cycling in the presence of hydrogen caused internal hardening that

reduced hydrogen permeability[543] while Bucur et al. measured decreased

diffusivities and increased solubilities in palladium and PdAg23 samples con-

taining defects.[544]

Metal films deposited by different techniques can be expected to possess

varying permeability characteristics. Thin palladium films deposited on iron by

RF sputtering (0.68 and 1.36 mm thick) and electron beam (e-beam) evapo-

ration (22–135 nm thick) were found to have hydrogen diffusivities appro-

ximately 2 orders of magnitude lower than in bulk palladium because of their

structure, specifically the large number of lattice defects and grain bounda-

ries.[318] Kajiwara et al. deduced that smaller grains deposited by organomet-

allic chemical vapor deposition (MOCVD) had higher flux because of the

large effective area for surface diffusion through the metal film.[428–430,545]

This is in contrast to the work of Lin and coworkers who observed the op-

posite relationship (larger hydrogen permeance with increasing grainsize)

with films deposited similarly.[409,442] This was ascribed to the film micro-

structure. Furthermore, e-beam evaporated palladium has also been shown to

display increased solubility and decreased diffusivity.[530] In any case, from

the divergent results described above, it is clear that this topic requires fur-

ther study.

Film structure or texture is also an important variable.[211,212,354] For

instance, texture as the result of cold working of the metal can affect hydrogen

permeability.[546] Palladium without texture should have preferential orienta-

tion in the [111] direction. The adsorption enthalpy of hydrogen as well as

surface diffusion on palladium depends somewhat on orientation.[212,411,547,548]

During annealing or hydrogen absorption, the texture can change or recrys-

tallization can occur (at temperatures as low as 300�C), affecting hydrogen

permeability as well as membrane strength.[211,549–553]

Researchers often encounter an increase or decrease in the hydrogen

permeation flux during palladium membrane operation at a specific tem-

perature, chiefly during start up. Depending on the alloy composition, anneal-

ing at various temperatures can result in an increase or decrease in
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permeability and permselectivity due to structural changes induced by atomic

ordering.[40,204,306,554–566] Annealing seems to densify films deposited onto

porous supports by sputtering or electrodeposition.[348,409,567] Wu et al. noted

an initial decrease in hydrogen flux that attained a steady state value after 80

hours and found that nitrogen flux decreased with increasing temperature

(400–500�C).[568] They speculated that these phenomena were due to in-

teractions between the palladium film and the titania support or rearrange-

ment of the palladium film resulting in a decrease in the effective membrane

area for hydrogen permeation.

The reason for increases and decreases in permeability at different tem-

eratures remains unclear and may be ascribed to either atomic ordering, recrys-

tallization, or segregation of impurities to the surface. Yeung et al. concluded

that removal of impurities was not the reason for the increased permeability

since the surface composition of a palladium film before and after annealing at

550�C was essentially the same.[560] Decline in hydrogen permeability during

annealing at high temperatures (>600�C) has been noted by the authors.[569] Pd/

alumina composite membranes have been observed to undergo a decrease in

permeability with time online at temperatures greater than 550�C, apparently

hastened by the tin impurity left behind during the standard surface activation

process for electroless plating.[569] Residual gases trapped in the metal might

also cause a flux decrease after running permeability experiments for an ex-

tended time with gases other than hydrogen.[375] This may be due to inter-

ference with hydrogen adsorption by the adsorbed impurity.[264,375,446]

1.2 The Alpha to Beta Phase Transition

Of great concern is the formation of two different palladium hydride

phases (a and b or a’) that occurs with an increase in hydrogen concentration

within palladium below the critical point of 293�C and 20.15� 105

Pa.[258,365,570–575] Above 293�C only the a phase can exist while both phases

may coexist below this temperature as hydrogen atoms increasingly occupy the

octahedral interstices. Since the overall absorption limit of hydrogen in

palladium is 67 atom % at one atmosphere and 20�C, the hydrogen atoms

transition from occupying individual interstices in the a phase to partitioning

inside the bulk metal into both the a and the b-Pd hydride phases.[576] This is

accompanied by distortion of the metal and the production of dislocations due

to the coexistence of two unequal face-centered cubic (fcc) phases with dif-

ferent unit cell sizes of 3.89 (a) and up to 4.10 Å (b).[39,206,258,541,542,577 – 586]

Nanocrystalline palladium may not fully experience the phase transition.[587]

Although the hydrogen permeability in the b phase is higher than in the

a phase and exhibits a maximum around 200�C, it is usually undesirable to
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operate in this state because of the internal stress as a result of the different

lattice constants, principally when the membrane is cooled or the hydrogen

concentration is changed.[588–592] Compounding this effect, consecutive hydro-

gen absorption/desorption cycles create defects causing the palladium structure

to become disordered, thus, membranes fabricated from pure palladium may

be destroyed by repeated exposure to hydrogen.[211,364] Known as hydrogen

embrittlement, the manifestation of this phenomenon is warping and destruc-

tion of the membrane.[215,593,594] To avoid it, a pure palladium membrane must

not be exposed to hydrogen at conditions where the b phase forms and should

be thoroughly purged with inert gas prior to cooling from high temperature.

1.3 Palladium Alloys

Alloys of palladium possess properties that may help to allay some of

the problems experienced by palladium membranes since the ability to

withstand temperature cycling is virtually nonexistent with pure palladium

films.[35,39] To begin with, the critical temperature and pressure for

existence of the b-Pd hydride is lowered in palladium alloys (except with

rhodium).[575] Alloys of palladium lower the critical temperature for the

a!b phase transition by narrowing the a/b-Pd hydride miscibility gap

(pressure plateau in the phase boundary of the pressure-composition phase

diagram) that pure palladium has below 293�C.[305,577,581,583,587,595–604] Fur-

thermore, the difference between the sizes of the a- and b-Pd lattice constants

is closer in alloys so less distortion occurs with successive hydrogen absorp-

tion-desorption cycles.[220,605]

Often alloying metals increase the permeability of palladium while

substantially enhancing its mechanical properties.[606,607] Many palladium

alloys are also more permeable to hydrogen than palladium itself including

PdAg25, PdCu40, PdRu6, and PdY10 (compositions herein are in weight %

unless otherwise noted).[45,212] For example, PdAg25 absorbs hydrogen more

quickly and is up to 1.5 times as permeable as pure palladium.[218] Alloys of

palladium with silver result in two hydride phases that have lattice sizes closer

than in pure palladium because the hydrogen solubility in the a and b phases

is increased and decreased respectively.[602,608,609] For PdAg23 and PdPt19

(atom %) the critical temperature (Tc) for formation of the b phase is around

room temperature.[203,305,610–616]

In addition, palladium alloys have higher tensile strength and hardness.

This helps to eliminate membrane rupture, warping, or cracking, or failure

associated with thermal cycling. Lattice expansion due to both hydrogen

concentration and thermal dilatation is important when considering membrane

durability during high temperature hydrogen separation.[40,266,550,558,617–622]

Expansion must be accounted for in module design.[623,624] Alloys are some-
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times more resistant to poisoning by contaminants such as sulfur and carbon.

Specific alloy compositions can be created to perform a reaction.[60,166,487]

The Pd–Ag alloy has been studied extensively because of its higher

permeability and increased strength compared to pure palladium. Pd–Ag

membrane modules are employed commercially for special applications such

as hydrogen isotope recovery, remote hydrogen generation or the ultra-

purification of hydrogen.[625] Although considerably better than pure

palladium, Pd–Ag has relatively low strength, still expands significantly upon

hydrogen absorption, and experiences grain coarsening during extended

periods at high temperature.[50,93,205,248,305,539,581,613,626] Beyond the increase

in lattice parameter due to substitutional alloying, electronic effects such as

donation of s and 3d-band electrons from silver to the 4d-band of palladium

influence hydrogen permeability and adsorption of molecules onto the

surface.[220,247,248,266,330,577,599,601,627 – 630]

Ternary and higher alloys of palladium have been developed to impart

operating capability at high temperature and pressure. Addition of alloying

elements with higher melting points than palladium can strengthen the mem-

brane by suppressing grain growth, creep, and recrystallization.[631] Multi-

component alloys with the transition elements, platinum group metals, or

small additions of rare-earths raise the recrystallization temperature and help

to maintain the plasticity and texture of the metal, especially at high tem-

peratures.[40,203,549,608,613,621,631–642] Type V-series and B-series alloys have

been developed containing four to six components, each composition tailored

to a specific operation regime or reaction.[50,52,93,204,353,604,621,622,635,643 – 651]

For instance, the V-2 alloy experiences very low dilatation upon hydrogen

absorption allowing higher pressure differentials without stress rup-

ture.[40,620,621] V-3 withstood 1000 cycles under hydrogen between 20 and

620�C before distorting.[646] PdAg10Ni5.5 has lower hydrogen permeability than

the type-V alloys but experiences less hydrogen concentration dilatation.[550]

The addition of rare-earths such as yttrium and transition metals with

larger atomic radii than palladium increases both the solubility and mobility

of hydrogen partly because these elements expand the interstitial spa-

cing.[229,242,266,305,577,630,639,652–668] These alloys are also harder.[266,305,577,669]

While substitutional alloys may increase permeability, interstitial alloys often

decrease hydrogen permeability by blocking hydrogen diffusion paths or acting

as traps.[670,671] In the case of boron, this is presumably caused by distortion of

these pathways by the atom in an interstitial position.[672]

From the literature, Pd–Cu alloys appear to have some superior pro-

perties. The advantages are lower cost (due to replacement of costly palladium

with a much cheaper metal), enhanced thermal cycling properties (resistance to

embrittlement), increased permeability, and sulfur tolerance.[451,673] The per-

meability passes through a maximum around 42% copper.[39,202,451,673–677]

PdCu40 has been reported to be up to 1.5 times as permeable as pure palladium

PALLADIUM MEMBRANE RESEARCH 21

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
2
4
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

at 350�C.[678] Like Pd–Ag, the copper alloy can withstand repeated temper-

ature cycling with much less distortion than pure palladium, a primary issue in

any system that endures periodic operation at temperature extremes.[678–681]

Although the reason for the sulfur resistance of the palladium–copper alloy

has yet to be explained, the increased hydrogen permeability supposedly de-

pends on the formation of bcc structure by annealing below 600�C.[676,682–685]

The increased permeability is attributed to an increase in diffusion coefficient

and electronic effects may be responsible for this property.[686–688]

1.4 Methods of Palladium Composite Membrane Fabrication

Palladium composite membranes may consist of a variety of configura-

tions. Solid tubes or foils may be rolled from the solid metal or from an alloy

melt. Thin layers of metal may be deposited onto almost any substrate by

physical or chemical vapor deposition. Electroplating can deposit palladium

onto a metal substrate more economically than the above methods but for non-

conductors such as ceramics another method such as electroless plating or sol-

vated metal atom deposition is required. The basics of each are outlined below.

1.4.1 Rolling

Palladium alloys are prepared by melting and homogenization under

inert gas or vacuum.[502] This is followed by cold working into the desired

foil thickness.[12] Palladium alloy foils or tubes may be welded or

brazed.[17,93,283,353,610,647] Tosti et al. report a method for rolling palladium-

alloy foils (� 50 mm) and welding them into the shape of a tube.[689,690]

Annealing in between the cold rolling steps was necessary because of work

hardening. Hydrogen can also be used to soften work-hardened alloys.[305]

Maganyuk et al. used silver solder to form a 50 mm PdRu6 foil into a cone

for liquid phase hydrogenation of dehydrolinalool to linalool, a perfume

component and pharmaceutical intermediate.[62,503,691] Adris et al. attached

palladium and stainless steel tubes using a plasma needle beam welder.[692]

Capillary tubes [1 mm diameter, < 100 mm wall thickness) have been used

with large pressure drops.[52,93,582,621,693]

1.4.2 Physical Vapor Deposition

Physical vapor deposition or PVD is the evaporation or ablation of a

metal for condensation on the target surface.[694,695] A resistively heated piece
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of metal such as a wire can serve as the metal source. PVD can be ad-

vantageous for deposition onto polymers since the substrate can remain at

room temperature.[91] PVD requires the use of costly vacuum chambers, clean

conditions, and expensive metal alloy targets.[696] Another drawback is that the

inside of a tube cannot easily be coated.[6] Nonetheless, PVD can be used to

deposit very thin, continuous metal and metal alloy films. Several methods of

PVD are described below.

In its simplest form, PVD involves vacuum evaporation of a metal by

heating. Samples may be rotated to ensure even coverage. Adding a degree of

complexity, sputtering with an electron beam (e-beam), laser, ion gun, or

plasma can remove material from the target to be deposited on the sub-

strate.[696,697] Although coating thickness is easily controlled using PVD, be-

cause the metal flux impinges at a certain angle, substrate rotation must occur

during deposition to avoid shadowing, or uneven coverage of the surface

leading to voids and porosity.[96,698,699]

Incident flux, presence of contaminants, substrate temperature, substrate

material, crystallinity, and orientation determine the microstructural evolution

of the thin film and must be considered to deposit a metal film with the

desired characteristics.[327,567,698,700–702] Differing sputtering yields often

complicate the deposition of alloys. For example, Athayde et al. tried to

deposit Pd–Ag23 (atom %) but the film was palladium-rich relative to the

sputtering target. This problem can be overcome by shielding the substrate

and sputtering long enough to reach target equilibration before depositing on

the substrate.[703]

1.4.3 Magnetron Sputtering

Magnetron sputtering takes place when a plasma (glow discharge)

induced by a gas (typically Ar) introduced into the vacuum chamber dislodges

atoms and ions from the metal target to be deposited on the desired sur-

face.[695,704,705] The fields of permanent magnets increase ionization. Ample

ionization, high current density, and high sputtering rates are required to

deposit a dense, continuous film. The same problem of alloy target equili-

bration applies to magnetron sputtering.

1.4.4 Ion Plating

To deposit a chemical compound or influence the properties of the depo-

sit, ions of inert or reactive gas bombard the metal evaporated or sputtered from

the target during PVD. Either an ion gun or plasma can provide the ions.[696]
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1.4.5 Chemical Vapor Deposition

Referred to as CVD or metal-organic chemical vapor deposition

(MOCVD), this method takes advantage of a compound with a sublimation

temperature below its decomposition temperature.[694] During composite metal

membrane fabrication, the organometallic material is usually sublimed in a

separate chamber, transported using a carrier gas, and thermally decomposed

at the desired surface or reacted with a gas such as hydrogen. The precursor

may also be decomposed in a plasma.[706] Common CVD precursors are pal-

ladium(II): acetate; acetylacetonate (acac); bis(hexafluoroacetylacetonate) or

(hfac)2; and chloride.[38,117,707]

A major advantage of CVD is that metal can be more easily deposited

within the support pores as opposed to only on the surface as is the case with

electroless plating and PVD.[708,709] This enables much thinner palladium films

to effectively block the pores of a porous support. The disadvantages of CVD

include contamination of the film with constituents of the organometallic

complex such as carbon. Another problem that CVD shares with PVD is

buildup of expensive precious metals on non-target surfaces.[710] The organo-

metallic precursors can also be exorbitant in cost, or if not commercially

available, difficult to synthesize.[711]

1.4.6 Spray Pyrolysis

Spray pyrolysis involves the entrainment of a metal powder in a high

temperature flame. The metal is carried to the substrate at high velocity in a

semi-melted state.[436]

1.4.7 Electrodeposition

During electrodeposition, a power source supplies the electrons for re-

duction of metal ions onto the substrate from solution. For pulsed elec-

trodeposition, the current is modulated in order to produce alternating metal

deposition/removal cycles. In this manner, film parameters such as grainsize,

stress, and composition can be well controlled.[509,712–714]

1.4.8 Electroless Plating

Also known as electrodeless, chemical plating, liquid phase epitaxy, or

autocatalytic plating, electroless plating is the deposition of metals using
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chemicals as the source of both metal and electrons. Electroless plating is

autocatalytic in that the deposited metal catalyzes further deposition.[715–719] A

full understanding of its nuances is a key to the production of thin, adherent,

pore-free metal films on various substrates. Electroless plating techniques have

been developed for many elements including palladium.

Electroless plating is commonly used to deposit palladium films because

of its throwing power (coverage of surfaces), ease of implementation, and the

ability to deposit on nonconductors.[720] There are many challenges in de-

positing thin but impervious (impermeable to gases other than hydrogen)

palladium films. First, if the surface is nonconducting or noncatalytic for

electroless deposition, it must be well activated to promote even coverage and

good adhesion of the deposit. Also, the support should be relatively smooth and

free of macrodefects. The focus of the following discussion is the sensitizing/

activation process, the plating bath operatives, and the interplay among the

many parameters required for making a thin, stable and selective membrane by

electroless plating.

Electroless plating occurs through an autocatalytic reaction mechanism

that is initiated by an activated surface.[715,721,722] The substrate is activated prior

to the plating operation by seeding the surface with metal crystallites (usually

gold, silver, platinum or palladium). This is required to initiate plating and

ensure adherence of the film. The metal nucleation sites initiate the electroless

plating reaction by catalyzing the decomposition (oxidation) of a reducing

agent in the plating bath.[723] Electroless plating is performed by immersion in

a plating bath containing the appropriate constituents at the optimum temper-

ature and concentrations to produce the desired microstructure and plating rate.

Electroless plating has several advantages compared to other deposition

methods. It has excellent throwing power (coverage of surfaces), in contrast to

electroplating where deposition is sensitive to the current density (electric

field) on the substrate.[724,725] Electroless plating can also coat nonconductors

with proper surface activation. It requires no expensive electronic equipment,

vacuum chambers, metal targets, or organometallic precursors. Some major

drawbacks of electroless plating are that it uses highly toxic chemicals and

generates hazardous liquid wastes.

1.4.8.1 Surface Cleaning

Prior to any deposition process, the porous support must be cleaned.

Contaminants must be removed to ensure that an adherent, uniform, and defect

free deposit can be obtained. Cleaning may be accomplished with a variety of

solvents and cleaning agents without altering the membrane characteristics.

Typically, surfaces to be plated are washed in mild detergent, dilute acid or
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base, followed by rinsing in alcohol or acetone and deionized water. Hydrogen

peroxide is another effective cleaning agent.

Adhesion to ceramic substrates may also be enhanced by certain chem-

ical treatments before plating. For example, etching of alumina has been

shown to increase adhesion.[273,726–728] Soaking in NH4F, HF, or NaOH cleans

and roughens the surface, possibly removing some glassy phase impurities

from alumina such as amorphous silicates.[729,730] During high temperature

processing of alumina membranes, lower melting glassy phases such as SiO2

and impurities may segregate to the surface between the alumina grains. Dis-

solution of some of this glassy phase on the surface helps to anchor the

palladium film by creating a network of pores or pits. Metal/ceramic adhesion

of films deposited by electroless plating depends primarily on mechanical

bonding.[731] Ameen et al. observed that on 96 and 99.5% a-alumina, etching

away the vitreous binder components of the alumina with ammonium or

sodium fluoride resulted in high pull strengths but destroyed some of the

ceramic.[726]

While the above cleaning techniques work well for ceramic substrates,

metals such as stainless steel require different preplating preparation con-

ditions.[6,99,332,732–736] Metals have an omnipresent oxide layer that must be

removed. This is accomplished via mechanical cleaning or acid pickling steps.

To prepare a porous stainless steel membrane for electroless plating, it was

placed in concentrated hydrochloric acid for 5 min., rinsed, and treated in

� 40% phosphoric acid.[737] Plating must immediately follow the cleaning step

(after rinsing) to prevent the oxide layer from reforming. Metals are often

activated with what is called a strike where an acidic metal bath removes the

oxide layer and electrodeposits a layer of metal active for further metal de-

position.[738,739] Once cleaned and activated, metals can be plated using

electroless or electroplating procedures.

To convert stainless steel from a hydrophobic to hydrophilic surface,

chromic and sulfuric acids with surfactants have been used.[740] For example,

stainless steel was dipped in 25–50% H2SO4 at 70–80�C for 30–75 seconds

prior to electroless plating.[733] This acid pickle (as it is called in the trade) or

chemical activation removes contaminants in addition to stripping the oxide

layer to expose more active metal for subsequent deposition.[716] A more

stable oxide layer can form if the conditions of this pretreatment are too

severe. Many highly effective preparations are commercially available.

1.4.8.2 Surface Activation

After cleaning and before electroless plating, it is necessary to activate

the surface of a non-conducting substrate. Traditionally, this is accomplished
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with tin chloride sensitizing and palladium activation baths.[741–743] This forms

the metal nanoclusters on the surface requisite for initiation of electroless

plating.[744] Surface activation is mostly for catalyzing the electroless plating

reaction while adhesion of the resulting deposit is primarily by mechanical

keying with the support.[745,746] The chemistries of the sensitizing and ac-

tivating processes have been thoroughly studied.[747–778] An overview of the

procedure follows.

There are two types of activation processes using tin and palladium

chloride, either sequential or mixed. In the sequential method, substrates are

immersed in separate tin chloride and palladium solutions with rinsing in

between. Mixed activators consist of a combination of tin and palladium salts

in one bath. It has been noted that the two-step procedure has more attributes

desired for palladium membrane fabrication: higher surface coverage and less

tin deposition.[779] The sequential sensitizing-activation procedure begins with

immersion in an acidic SnCl2/SnCl4 colloidal sensitizing solution followed by

acidic palladium containing activating solution. The colloidal tin solution is

required to anchor the palladium to the surface.[746] Upon immersion in palla-

dium activating solution, tin binds palladium to the surface via the reaction,

Sn2þ þ Pd2þ ! Sn4þ þ Pd0;

creating a Pd–Sn alloy on the substrate.

The tin should resolubilize in the acidic palladium activation solution,

but in practice much remains on the surface. Tin-rich surface layers usually

cover the active palladium cores.[767] Although activity has been found to

depend on the Sn/Pd ratio, excess tin accumulating on top of the palladium

crystallites blocks their activity in catalyzing hydrazine oxidation.[723] Rinsing

after activation is required to prevent ‘‘drag-in’’ of the sensitizing and

activation bath components into the plating bath.[716–719,780] Otherwise, spon-

taneous decomposition of the bath may occur as the catalyst creates many

nucleation sites throughout the plating solution.

Charbonnier et al. provided a good overview of tin and palladium

activation processes and mechanisms as well as a review of relevant lite-

rature.[749,750] These reports concluded that tin chemisorbs preferentially onto

substrate oxygen followed by palladium attachment via chlorine ions adsorbed

on tin. Although their work involved polymers, the mechanism can probably

be extended to alumina with its surface hydroxyl groups. When the colloidal

tin particles contact the substrate, Sn2 + adheres to the surface, probably by a

mechanism shown in Figure 1 (adapted from Charbonnier et al.,[750] Hulteen et

al.,[781,782] and Menon and Martin[783]).

Silvain et al. reported the formation of Sn–O–Pd bonds on the surface

of NiTi(O) observed with X-ray photoelectron spectroscopy (XPS) and depth
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profiling after activation with the two-step activation procedure. After

submersion in the tin solution the surface was almost completely covered

with an approximately 3 nm thick layer of tin and tin oxides (SnO and SnO2).

The tin had actually replaced nickel in the Ni2O3 forming SnO2 and nickel.

The palladium activation step resulted in 2 and 3-dimensional nanometer sized

palladium islands and palladium oxide enveloped by a tin and tin oxide layer

along with small amounts of chlorine compounds ( < 1%). When copper was

deposited by electroless deposition it interdiffused into the activated layer

resulting in strong adhesion.

Several studies have been performed on the stability of tin sensi-

tizers.[784,785] Tin sensitizers are photosensitive, so exposure to ultraviolet

light should be avoided to prevent photo-oxidation.[784] Oxidation of the

colloidal tin sensitizing solution is detrimental to its efficacy and can be

prevented by storing the solution under an inert gas blanket or by bubbling

Ar through the solution.[731,784]

Palladium electrodeposited onto stainless steel substrates and then air

dried has resulted in the formation of divalent palladium oxide (PdO) whereas

tetravalent palladium(IV) oxide (PdO2) formed on air dried activated sub-

strates.[715] In the latter case, uniform activation particles of � 500 Å diameter

were easily oxidized to both palladium(II) and palladium(IV). Oxides interfere

with the catalytic properties of the activation layer. Palladium oxides of higher

valence ( + 4) appeared to be electroinactive towards hydrazine oxidation al-

though hydrazine reduced palladium(II) oxide to palladium(0) upon immersion

in electroless plating solution.[715] Even oxygen dissolved in the sensitizing or

activating solutions can passivate the catalytic sites on the substrate.[731]

Excess tin can be removed from the activated surface by performing a

technique called acceleration. This entails briefly soaking the membrane in a

solution of acid, base, or complexant to dissolve away excess tin and tin oxides

after performing the sensitizing-activation procedure.[745,760] Water, with a pH

of 7, is a poor solvent for tin removal although rinsing in water is not detri-

mental to coverage of the surface by Pd/Sn catalyst. Disodium-ethylene-di-

amine-tetraacetic acid (Na2EDTA) is effective at acceleration with the

advantage of being non-toxic and usable over a large pH range. Without acce-

Cl- Pd2+ Cl-

Al l Al

O Oδ- δ-

Al Al

O Oδ-

Sn2+

Al

O O δ-

Sn4+

Clδ- PdClδ-

A Al Al Al

Figure 1. Possible mode for sensitizing/activation of alumina surface.
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leration, the tin coverage can be greater than that of palladium.[762] Tin shields

the palladium crystallites from the plating bath reactants, reducing their cata-

lytic activity by inhibiting the hydrogen sorption capability.[723] By removing

the tin compounds that mask the catalytic activity of the palladium nuclei, the

induction time before electroless plating commences is shortened.[769] Palla-

dium coverage has been found to remain constant during acceleration although

it can cause rearrangement of the Pd/Sn islands on the activated surface.[762]

The state of the palladium crystallites after acceleration depends on the acce-

lerating agent.[768,769] Membranes have previously been fabricated using acce-

leration in the sensitizing-activation process prior to electroless plating.[188]

Before acceleration, drying of the substrate must also be prevented since

the active particles react with oxygen forming difficult to remove compounds

that prevent initiation of metal deposition.[786] None of the accelerators

dissolve highly insoluble SnO2 from a dried surface.[762] After washing and

drying the substrate, tin not in the Pd–Sn core is in the hydrated Sn(IV) oxide

state. Acceleration removes tin by a factor of 3 to 10 resulting in a Pd/Sn ratio

of � 3. Tin remaining after activation may dissolve into the electroless bath to

be codeposited with the plating metal.[765,766]

The structure of the palladium clusters on the substrate that initiate

electroless plating may also influence the structural characteristics of the

deposit that are dependent on the nucleation and growth process.[787] The

coverage, adhesion, and porosity of the film are a function of catalyst activity

and dispersion.[723] The primary activator deposit strongly affects film growth

while bonding between the film and substrate occurs through metal–oxygen

bond formation at the interface.[788] The morphology of the substrate can be

expected to have a strong influence on the structure of the deposit as

well.[787,789] Adhesion also depends on the amount of tin and palladium

adsorbed on the substrate during sensitizing/activation.[745] Furthermore, the

higher the surface coverage by the activating metal, the better the coverage by

the depositing metal and the less porous the deposit will be.[739,746] Number

and size of the metal grains on the substrate affect the catalyst activity.

A disadvantage of the Pd/Sn activation process is that contamination of

the subsequently deposited palladium film with tin from the sensitizing bath

has been shown to lower the temperature where pores form in the palladium

and adversely impact the high temperature membrane stability.[569] An

alternative for catalyzing alumina surfaces for electroless plating is to use

methods ordinarily used for catalyst preparation. Nanoscale metal clusters on

the substrate created by impregnation, incipient wetness, or ion-exchange could

serve as sites for initiation of electroless plating or actually create the

permselective layer.[790,791] This notion was experimented with by Li et al. who

deposited a g-alumina sol-gel layer containing PdCl2 onto an a-alumina

support to reduce the pore size and catalyze the electroless plating reaction.[792]
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Other methods for surface activation also eliminate tin by depositing an

organometallic precursor from solution followed by treatment with heat, laser,

plasma, or ultraviolet light to remove the organic fractions.[793–796] Sodium

borohydride (NaBH4) can also be used to reduce the organometallic to pure

metal. In theory, any technique may be used to deposit a metal seed layer to

promote electroless deposition, as long as the metal catalyzes decomposition

of the reducing agent.[797,798] Wu et al. activated a porous titania membrane by

using a photocatalytic reaction and PdCl2.[568,799] The palladium film

deposited by electroless plating onto the well-dispersed palladium activating

layer was thin (0.3–0.4 mm), adherent, and had a high H2/N2 permselectivity

(1140 at 500�C). Schwartz et al. developed an activation technique for ceramic

supports that involved the deposition of palladium acetate from solution,

followed by heat treatment to burn off the organic fraction and leave behind

palladium particles.[117] An advantage of this procedure is the elimination of

wastewater generated from the sensitizing and activation procedure.[273]

1.4.8.3 Microstructural Evolution During Electroless Plating

Since the plating rate and film morphology depend on many variables

such as concentration of bath constituents and plating temperature, un-

derstanding the fundamentals of electroless plating is the key to optimizing the

conditions for producing usable palladium and palladium alloy films on va-

rious supports. Palladium film structure in composite membranes has been

linked to limitations in high temperature stability, resistance to thermal cy-

cling, and minimization of the defect-free film thickness.

Therefore, control of electroless plating methods is critical. Grainsize

and film porosity can vary widely depending on electroless plating bath

concentration, composition and plating temperature.[800] Preferably the

coefficient of thermal expansion of the support matches that of palladium

to reduce stress build up in the deposit.[801,802] Deposition under an osmotic

pressure gradient (‘‘osmotic plating’’) by conducting electroless plating with

a more concentrated solution on the opposite side of the porous support has

been shown to produce thinner palladium films that are more impenetrable to

permeation of gases other than hydrogen.[198,803–807] Zheng and Wu deposited

palladium in a closed system so that the pressure increased during

plating.[808,809] This appeared to promote better pore closure by the

depositing metal. To obtain uniform deposition during electroless plating

the solution should be mildly agitated (or the solution flow reversed) to

remove bubbles that form and obstruct deposition, creating pores.[810]

Substrates should be inverted periodically if plated vertically or rotated if

plated horizontally.[304,436]
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During electroless plating, electrons are released by the anodic partial

reaction and consumed by the cathodic partial reaction:[811,812]

R0 ! Rzþ þ ze	

Mzþ þ ze	 ! M0

Here, R is the reducing agent, M is the metal and z is the number of

electrons transferred. For deposition to occur the sum of the standard redox

potentials (E�) of the oxidation and reduction reactions must be positive and

DG� (Gibb’s free energy) be negative so that the reaction is thermodynami-

cally favorable.[724] However, if the sum of the redox potentials is too high,

the bath will be unstable and spontaneously decompose.

Electroless palladium plating baths normally consist of a palladium–

amine complex stabilized by a chelating or sequestering agent such as

Na2EDTA. Plating bath stability dictates the amount of reducing agent that can

be added. According to early work by Rhoda on the subject, the primary

factors influencing electroless plating of palladium are the metal-ion

concentration, temperature, and hydrazine concentration while amine solvent

and stabilizer (EDTA) concentrations are secondary.[741–743] Bath pH is

usually around 11 depending on the ammonium hydroxide (NH4OH) content.

Controlled deposition of palladium from the stabilized bath is accomplished by

the introduction of a suitable reducing agent:[720,743]

2PdðNH3Þþþ
4 þ N2H4 þ 4OH	 ! 2Pd0 þ 8NH3 þ N2 þ 4H2O:

Vigorous agitation of the plating solution can occur due to gas

production. Gases adhering to or trapped in the film during deposition can

result in a discontinuous deposit or ‘‘skip’’ plating. The reaction may also be

broken up into anodic and cathodic half-reactions:[734]

N 2H 4 þ 4OH	 ! N 2 þ 4H 2O þ 4e	;

2Pd2þ þ 4e	 ! 2Pd0:

Beginning film structure is largely dependent on composition and con-

centration of palladium in the plating bath with plating conditions strongly

influencing subsequent porosity. Electroless films form by a sequence of

distinct steps.[179,188,560] Microstructural evolution transpires with nucleation

and ensuing 3-dimensional growth from catalytic centers on the sur-

face.[188,785] First, nucleation takes place when the palladium on the activated

surface catalyzes deposition. These tiny particles grow and the crystals coal-

esce into larger particles, eventually forming a continuous film. The final grain
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structure depends on this initial nucleation and growth process as well as the

structure of the substrate.[725,785] Generally, large (submicron to micron sized)

crystallites form that are comprised of much smaller grains (< 100 nm).[808]

In addition to the catalytic activity of the substrate, metal-ion con-

centration in the electroless plating solution highly influences film mic-

rostructure by affecting the nucleation rate. Supersaturation, brought about by

higher concentration, increases the nucleation rate resulting in the formation of

copious tiny palladium particles. These small particles posses high chemical

potential and pack tightly into a dense film to minimize surface energy. With

dilute plating baths, crystal growth is faceted due to lack of supersaturation. In

that case, a low rate of mass transfer to the surface leads to nucleation inhi-

bited growth where diffusion of metal complex to the substrate controls de-

position. Therefore, at lower metal-ion concentrations, adhesion is improved

because the nuclei are well distributed on the substrate in the initial stages of

plating.[715,731] Indeed, pull strength increases with decreasing metal-ion con-

centration in the bath.[739] While such well crystallized films adhere better to

the substrate, they contain pores due to loose packing making them unsuitable

as membranes.[800]

Shu et al. ascertained that the brighter film from a concentrated bath

consisted of tightly coalescent surface grains with no favored crystal orien-

tation in contrast to the tapered, loosely packed crystallite particles obtained

from a dilute bath.[800] The dilute bath with low metal content resulted in large

grains separated by voids, suggesting that the concentrated bath is more

desirable for creation of a coherent film. However, the film deposited from the

dilute bath adhered more strongly to a stainless steel support.[800]

Electroless plating is either diffusion or electrochemically (activation)

controlled. Depending on the conditions, diffusion of reactants to the surface,

or the reaction on the surface can be rate determining.[813] In diffusion control,

mass transport or diffusion of [PdEDTA]2 	 complex to the surface followed

by reduction (after dissociation of the metal complex) controls the rate.[814]

This results in some interdependence of the two partial reactions.[811] For

instance, electroless copper plating rate has been found to be heavily

dependent on agitation at low copper concentrations while during operation in

kinetically (electron transfer from the reducer) controlled regimes the rate was

zero order with respect to copper ion concentration. The reaction is likely to

be diffusion limited on rough surfaces due to the thicker diffusion layer.[724]

Anodic oxidation of reductant is usually under activation process control

and not affected by agitation of solution while the partial cathodic deposition

process is frequently controlled by diffusion (metal complex transport to the

surface).[744,814] The two partial reactions are interdependent when they

proceed simultaneously.[814,815] The electroless palladium reaction is said to be

under mixed potential control; diffusional (palladium complex) and electro-
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chemical (hydrazine decomposition kinetics).[814,816] The slower of the two

reactions determines the rate of metal deposition.

Several studies have looked at electroless plating rates in relation to

palladium composite membrane fabrication.[304,779] Collection and analysis of

the gases produced is an accurate way to measure palladium deposition

rate.[779] Shu et al. established that hydrazine oxidation is the rate-limiting step

in electroless palladium deposition onto stainless steel, i.e. hydrazine ad-

sorption and dehydrogenation controls the rate of palladium deposition.[715]

Yeung et al. have studied the plating kinetics of a hydrazine based electroless

palladium plating bath and found that hydrazine is the limiting reactant.[560,817]

A quartz crystal microbalance was used to monitor the amount of metal being

deposited.[818] Zhao et al. found that higher concentrations of hydrazine in the

plating bath produced more compact and permselective palladium films.[819]

The increased deposition rate from higher reducer concentration resulted in

smaller metal particles. In the presence of catalyst (palladium), hydrazine also

decomposes:[779]

2N 2H 4 ! N 2 þ 2H 2:

A high hydrazine/metal ratio in the bath can also increase the plating

efficiency (fraction of palladium deposited from the plating bath).[779,818] To

obtain better plating efficiency and a more constant plating rate, hydrazine

should be added incrementally to account for its decomposition and prevent

the bath from precipitating by adding too much at once.[198,560,779]

The oxidation kinetics of the reducing agent greatly influence electroless

plating bath performance. Hypophosphite based baths possessing greater

stability and plating efficiency have been used to prepare palladium composite

membranes.[806,812,815,820] However, hydrazine is a superior reducing agent for

palladium membrane fabrication since hypophosphite tends to deposit 3–14

atom % P that is incorporated into the palladium film, leading to brittleness

and probably a reduction in hydrogen permeability.[6,99,817,821,822]

Addition of ammonium hydroxide to the plating solution raises the pH

and supplies the hydroxyl ions that are consumed by hydrazine oxidation. It

also stabilizes the bath by complexing with palladium although too much will

inhibit deposition. As the alkalinity of the bath increases, metal ions can

hydrolyze to metal hydroxides that precipitate out.[823] Excess ammonium

hinders this tendency. Bath decomposition is deleterious as it necessitates

replacement of the electroless plating solution and plating container. Also

known as palladium black because of its appearance, palladium nanoparticles

are sometimes desired on the surface of the palladium membrane since it

increases membrane permeability as well as catalytic activity by increasing the

metal surface area.[258,288,380,497,589,598,824–828]
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Plating temperature also has a significant impact on film morphology.

The lower the temperature, the larger the crystallites that are formed while

faster plating at higher temperatures creates palladium films that are

amorphous with smaller, more closely packed crystallites resulting in a denser

structure with smaller grainsize as well.[812,815,820,829,830] Supposedly, the latter

is more desirable for producing a thin, defect-free film with greater hydrogen

permselectivity. Better quality deposits have been obtained at higher plating

temperatures because compressive stress and lattice strain are reduced.[831]

Expedited nucleation at higher temperatures allows the depositing atoms to

consolidate into the crystal lattice without strain. Moreover, if plating rate is

too rapid, nanoscale voids may form in the coating where swiftly spreading

deposition growth fronts coalesce.[731] Hydrogen absorbed by the deposit

during the plating process can cause hydrogen embrittlement of the film that

results in blistering.[787,817]

Concentration of the ligand complexing agent in the electroless

palladium solution is of considerable importance with respect to deposition

rate and film morphology.[779] The chloride anion of the palladium salt is not

completely removed from the coordination sphere of the metal ion but is in

equilibrium competition with the organic complexing agent EDTA and solvent

molecules (water and hydroxyls) for the coordination positions of the metal

ions.[720] The complexed palladium diffuses to the solid–liquid interface and

deposits by capturing electrons from the catalytic surface (supplied by

oxidation of the reducer) and returning to the zero valence metallic state.[812]

Free metal ions are the product of ligand complex dissociation:

ðPdmLnÞ2m	nz ! mPd2þ þ nLz	;

where L is the ligand, m and n are the metal and ligand coordination numbers

respectively, and z is the charge on the ligand.[812]

Stability of the electroless plating bath is imparted from a shift in the

reduction potential due to the increased number of coordination positions of the

plating-metal ion filled by ions of the ligands with which it is compounded.[832]

As a strong complexing agent for palladium ions, high concentrations of EDTA

slow down the metal complex dissociation reaction by decreasing the avail-

ability of metal ions to be reduced.[734] Then the dissociation reaction to free

palladium ions from the stable EDTA complex becomes the rate-determining

step in electroless plating, corresponding to a slow deposition rate.[820] Adding a

high concentration of stabilizer is the same as lowering the effective concen-

tration of metal in solution, promoting the growth of large crystallites.[800] Since

cathodic overpotential is directly proportional to metal complex concentration,

smaller grains and continuous films form at higher complex concentration due

to the slow release of metal cations from metal complex dissociation.[812]
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Other additions to the plating bath affect plating rate and film structure.

The effect of formaldehyde (HCHO) addition to electroless plating baths has

been studied by Yeung et al. and the mechanism for its decomposition to

formate ion has been studied by Bindra et al. and Horkans et al.[761,762,816,833]

Formaldehyde oxidation is under kinetic control where the first step is

dissociative adsorption into a carbon containing fragment and H + .[762] For-

maldehyde acts as a moderator and produces smaller, more uniform grains. In

excess it inhibits plating completely and its presence is not conducive to high

palladium conversions in the electroless plating bath.[779,805,806]

1.4.8.4 Formation of Palladium Alloys

Although several researchers have performed electroless codeposition

of palladium and silver, controlling the film composition is tricky.[179,734,

805,818,834 – 836] Another option is to deposit the metals separately and then

anneal.[837–841] To obtain an alloy film from two distinct metal layers in a

reasonable amount of time, a high enough temperature must be utilized to

promote complete metallic interdiffusion. Pd–Ag alloy films have been

fabricated by several research groups using such sequential deposition and

annealing.[179,185] Shu et al. annealed a codeposited Pd–Ag film for 150

minutes at 400�C and a sequentially deposited Pd–Ag film for 5 hours at

550�C.[734] Cheng and Yeung studied the kinetics of Pd–Ag codeposition from

a mixed electroless plating bath and were able to control the alloy

composition.[818] Annealing for 8 h at 500�C formed a uniform alloy. Hydrogen

accelerates the alloying process by facilitating metal atom diffusion.[842–846]

Interestingly, when Keuler et al. deposited several microns of palladium

and silver, depositing palladium first resulted in much better adhesion to the

support.[847] The membranes were heated for 5 h at 650�C under hydrogen. On

the other hand, the film was more homogeneous after heat treatment when

silver was deposited first. In contrast to silver, nickel deposited onto palladium

resulted in the formation of a metal layer with completely homogeneous

composition during the same heat treatment schedule.[848]

1.5 Membrane Supports

Minimizing the palladium loading has been the driving force behind

development of composite membrane configurations. A variety of deposition

processes and supports have been used. The simplest technique involves

compressing or diffusion welding a palladium alloy foil onto a refractory metal

foil or a macroporous support such as compacted stainless steel parti-
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cles.[30,44,193,329,377,849–852] The types of supports commonly used in palladium

composite membrane fabrication are outlined below.

1.5.1 Porous Supports

Palladium films are frequently supported by a porous membrane.

Membranes made of ceramic, Vycor glass, or stainless steel are commercially

available.[853] Each type of support has economical and performance tradeoffs.

Some merits of stainless steel are sturdiness and weldability.[737] Alumina is

resistant to chemical attack and is stable at high temperatures.

Pd/ceramic membranes are the most prevalent type of composite due to

high permeability, and the ability to withstand high temperatures. Both sym-

metric and asymmetric ceramic supports are used.[35] The tubular geometry is

popular but disks are often used as well. Asymmetric membranes are dis-

tinguished by a relatively thin selective layer of smaller particles coated on the

surface of the bulk of the membrane comprised of larger particles. Titania, g-

alumina, and silica are popular top layers and angstrom pore sizes are attainable.

Asymmetric supports have much less resistance to flow since the fairly dense

selective layer is very thin relative to the much more porous wall of the tube.

Asymmetric membranes are manufactured by coating the inner diameter

of an extruded and fired highly porous support with successive dip-coatings,

slip-castings, or sol-gel layers of progressively smaller particles.[116] Curing

and firing may be required between each deposition and special treatment

processes are required to prevent cracking of the asymmetric layer. Whereas

asymmetric membranes function well as supports for palladium membranes

due to their smooth surface and low resistance to gas flow, the high cost of the

multistep manufacturing process makes them relatively expensive compared to

other porous supports. Symmetric membranes have the same pore size

throughout the wall and are produced in one extrusion or casting and firing

sequence so that lower cost is their primary advantage. The major negative of

a symmetric support is its higher resistance to flow.

Asymmetric membranes sinter at lower temperatures because of the

layer of very high surface area material. For example, the pore size of 40 Å

g-alumina membranes will increase at 550�C.[854] Titania undergoes a phase

transformation as low as 300�C[855,856] while zirconia (ZrO2) and g-alumina

are stable up to � 600�C.[117,192] Zirconia can be stabilized with yttria

(Y2O3).[415,779,857,858]

Porous metal supports are fabricated by compressing or sintering

together very fine metal particles. Porous metal membranes are sturdier and

easier to seal (by welding or brazing) in an industrial setting than more fragile

ceramic supports and their cost falls between symmetric and asymmetric
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ceramics. Of course, with the economy of scale, the price of each type of

membrane would be expected to drop significantly. Porous metal supports are

also frequently used to form palladium composite membranes. Stainless steel

is primarily used although porous silver discs have also been adopted as a

palladium membrane support.[822] Jarosch et al. used porous Inconel (0.2 mm

pore size) as a support.[859] An advantage of porous metal is that its coef-

ficient of thermal expansion is closer to that of palladium than ceramic sup-

ports, resulting in less stress during thermal cycling.[801,802] The smallest pore

size commercially available in a porous metal tube or disk is 0.2 mm. The

surface roughness or non-uniform pore distribution of porous metal supports is

the limiting factor in obtaining a thin, non-porous palladium film on the

surface.[117]

Two other types of commonly used supports are porous borosilicate (or

Vycor) glass and anodic alumina. Vycor is available in uniform symmetric

pore sizes as small as 40 Å.[860] It was one of the first supports to be used to

fabricate selective palladium composite membranes.[180,861,862] However,

porous glass can sinter above 550�C causing pore structure collapse and can

also undergo hydrothermal sintering (>450�C).[179,192,854,860,863,864] Very small

(nanoscale), uniform, and straight pores can result from anodizing aluminum

into alumina except it is less frequently used as a palladium membrane support

due to its fragility and limited temperature range of stability.[737,865,866] Porous

anodic alumina membrane supports can be formed by electrochemical oxida-

tion of an aluminum foil or tube in oxalic acid.[58,867,868] Thin (1–2 mm)

palladium alloy films have been deposited onto anodic alumina foils that were

sealed into an apparatus along the nonporous edges of the aluminum foil.[58]

By first sputtering and then electroplating, Itoh et al. deposited palladium

films that were several microns thick inside anodic alumina tubes that had

pores on the order of tens of nanometers.[867] The hydrogen/nitrogen ideal

separation factor was 1640 at 350�C when a current density of 100–200 A/m2

was employed for 24 min. of electroplating to plug the pores with a 4 mm

thick film. Their report also provides a comparison of palladium composite

membranes fabricated by a variety of methods. Comparison of the membranes

made by many different researchers to decide on the best method of metal film

deposition is difficult due to performance variability that is a consequence

of the incomplete stage of technological development for each composite

membrane type.[867]

1.5.2 Influence of Support on Palladium Composite Membrane Fabrication

Surface chemistry, porosity, and roughness of the support will determine

the amount of palladium required to form a hydrogen permselective film with-
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out pores. Greater surface roughness and larger pore size will necessitate a

thicker layer of palladium in order to span all of the pores and cover the surface

of a supporting membrane.[46,276,567,869] Furthermore, microscopic debris may

create defects in a palladium film.[409] For example, it has been indicated that

the use of clean-room conditions during the fabrication of silica membranes

drastically decreased the number and size of defects in the permselective

layer.[65,870] Each type of substrate (and deposition method) has its own

characteristics that determine the amount of palladium that will be needed. As

an illustration of the effect of pore size on composite membrane preparation,

Yildirim et al. determined that at least 4 mm of palladium deposited by magne-

tron sputtering onto Vycor glass with 4 nm pores was necessary for a leak-free

film.[871] Backing up this assertion, Gobina et al. obtained 6 mm thick pinhole-

free PdAg23 films deposited by magnetron sputtering onto Vycor.[872–874] A

dense film was not attainable by sputtering onto a support with 12 mm pores.

Zhao et al. correlated the gas tightness of a Pd–Ag film with the surface

roughness of the g-alumina sol-gel layer it was deposited on.[869] Quicker et al.

reported that CVD of palladium onto alumina with 0.1 mm pores was

unsuccessful although better results were realized using supports with 4 nm

pore size while Jayaraman et al. concluded that the number of defects in Pd–

Ag films sputtered onto g-alumina depended on the pore size and surface

roughness of the support.[436,567] Deng and Wu used electroless plating to

deposit � 20 mm palladium onto the outer diameter of porous ceramic with 0.5

mm pore size.[875] Nitrogen could not be detected on the permeate side of the

membrane during permeation experiments. On a porous g-alumina support,

Gryaznov et al. deposited a defect-free composite film consisting of a 0.17 mm

layer of PdRu6 on top of 0.04 mm of tantalum.[691]

It appears that porous metal supports may require a relatively thick layer

of palladium compared to similar porous ceramic supports to form a pore-free

film. This may be due to inherent manufacturing imperfections in the form of

large pores or high surface roughness. Nam et al. discovered that because of

the roughness of 0.5 mm porous stainless steel supports, macropores remained

unplugged even after depositing 10 mm of Pd–Ni. Gryaznov et al. were able to

obtain a leak-free composite membrane with 10 mm of Pd–Ru on similar

supports.[62,348,876] Shu et al. found that stainless steel supports with nominal

0.2 mm pores required at least 15 mm of metal deposited by electroless plating

to form a dense, impervious film.[801,877] More recently, Mardilovich et al. and

Lin and Rei reported palladium film thicknesses between 19–28 mm

electroless plated onto porous stainless steel supports that had a nominal 0.5

mm pore size.[304,878] Quicker et al. discovered macrodefects (>50 mm) that

spoiled an otherwise continuous coating on a porous stainless steel tube.[436]

Finally, Jarosch and de Lasa consumed 70–100 mm of palladium to coat 0.2

mm porous Inconel.[859]
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Exceptions to the above results have been obtained on porous stainless

steel by using osmotic plating (described above) or vacuum electroplating.

Yeung et al. obtained a membrane with a hydrogen/nitrogen permselectivity of

� 100,000 using osmotic plating.[198] This membrane withstood repeated

thermal cycling between 350 and 600�C without loss of permselectivity while

membranes prepared using ordinary electroless plating did not. Without osmo-

tic pressure, Cheng and Yeung used � 18 mm of palladium to form a dense

membrane on porous stainless steel.[817] Li et al. deposited a 10 mm thick

palladium film onto porous stainless steel using osmotic plating and the result-

ing membrane had a hydrogen/nitrogen permselectivity of over 1000.[879,880]

The average pore size of porous metal supports can be reduced by

mechanically altering the surface.[881] Mardilovich et al. simply abraded the

surface to accomplish this while Jemaa et al. used a special technique

involving shot peening to attain surface pore size reduction of the stainless

steel membrane, effectively creating an asymmetric membrane.[304,882] Quicker

et al. used high temperature sintering to form a smoother surface for electroless

plating and electrodeposition, although the resulting films were not very

permselective due to macrodefects in the porous (0.5 mm) stainless steel.[436]

Jarosch et al. electrodeposited nickel and copper onto a porous Inconel

support to reduce the average pore size before electroless plating, while Nam

et al. decreased the average pore size of a stainless steel membrane by

sintering nickel powder onto the surface and electrodepositing a layer of

copper before electrodeposition of Pd–Ni.[348,859,876] This enabled the vacuum

deposition of a thin hydrogen selective palladium layer of less than 1 mm onto

the stainless steel support. Gryaznov et al. coated a porous stainless steel

sheet with melted indium and then sputtered Pd–Ru to a thickness of 2

mm.[44] The membrane had a high flux and withstood 450 thermal cycles

under hydrogen. It should be mentioned that with mechanical and chemical

treatments, care must be taken to avoid weakening the surface and adversely

affecting film adhesion, or actually increasing the surface roughness and pore

size of the membrane.[882]

Porous ceramic supports are frequently modified with several layers to

reduce the average pore size or decrease the surface roughness prior to

palladium film deposition. This is usually accomplished via sol-gel or slip-cast

coatings that are subsequently dried and fired. Another technique that has been

used is vacuum aspiration of an alumina powder suspension through the

membrane.[883] Coating porous stainless steel with an intermediate layer such

as titania can also serve to reduce the pore size and result in a smoother

surface more amenable to palladium deposition.[58] The surface of a membrane

support can actually be too smooth. Metal films deposited onto substrates with

very small pores ( < 20 nm) can more easily delaminate due to stress in the

film or lack of mechanical interlocking with the support.[884]
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1.5.3 Nonporous Supports

Metals, ion-conducting solids, and polymers are classified as nonporous

or semi-porous supports. Their main benefit is the possibility to more easily

fabricate a leak free membrane. Since the support is solid, a much thinner

palladium layer can be used and discontinuities in the palladium layer will not

cause defects that will result in a loss in permselectivity.[6] Advantages of

metal supports include higher hydrogen permeabilities than palladium in the

case of the refractory metals, and the ability to weld or braze them into a

module. Disadvantages often include low hydrogen permeability in the case of

ion-conducting materials such as metal oxides, and metallic interdiffusion of

palladium into metallic supports at temperatures above � 400�C.[193,227,309,472]

A promising composite membrane configuration involves the deposition

of a palladium layer (or foil) onto a base metal foil or tube.[6,99,193,227,309,329,

332,333,449,472,885 – 890] Many metals other than palladium are also quite

permeable to hydrogen. Relatively cheap (compared to palladium) refractory

metals such as niobium, vanadium, and tantalum are an order of magnitude

more permeable to hydrogen than palladium while nickel permeates hydro-

gen but at a slower rate than palladium (1/100 that of palladium at

600�C).[6,193,237,255,312,891–895] However, most metals are readily oxidized,

impeding hydrogen dissolution into the bulk metal. A thin surface coating of

palladium prevents passivation of the surface and acts as a superior catalyst for

hydrogen dissociation into its atomic form.[99,197,318,326–328,333,337,896]

Unfortunately, the problem of metallic interdiffusion plagues metal–

metal composite membranes. The resistance to hydrogen permeation of the

metal–metal interface has not been characterized either.[193,215,338,897] Like

palladium, refractory metals are susceptible to embrittlement due to high hy-

drogen solubility at lower temperatures.[6,332] However, compared to tantalum

and niobium, vanadium seems to embrittle less.[99]

Polymers are another class of nonporous support except most are

subject to limitations in operating temperature. Metallized polymers have

been fabricated for hydrogen separation and reaction.[898] Mercea and

coworkers studied the permselectivity enhancements from metallization of

various polymers.[441,899–902] In one case, the hydrogen/nitrogen separation

factor of an asymmetric cellulose acetate membrane was increased from 53 to

201 by sputter deposition of a 30 nm thick palladium layer.[441] A natural

rubber layer had to be deposited between the palladium and cellulose acetate

membrane to prevent damage to the cellulose acetate during sputtering.

Disparities in the hydrogen permeability of the thin palladium layer from

that of the bulk permeability value were ascribed to either hydrocarbon

contamination, stress in the palladium, or inhibition of hydrogen recombi-

nation into molecules at the Pd/polymer interface. Apparently the polymer
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coatings interfered significantly with the ability of palladium to absorb/

desorb hydrogen.[902]

Athayde obtained a hydrogen/carbon monoxide separation factor of 100

with poly(dimethylsiloxane) sputter coated with 250–1000 Å of PdAg24 (atom

%).[91] A polyimide toplayer protected the palladium from abrasion and a

hydrogen/carbon dioxide permselectivity of 1200 was obtained at 100�C and

DP = 689.5 kPa. While flux was stable for at least 6 weeks at 25�C, impurity

flux increased during repeated thermal cycles (25–100�C). Ermilova et al.

evaporated a 20–80 nm PdRu9.8 film onto a 0.15 mm thick layer of polydi-

methylsiloxane rubber supported on porous copper sheet. However, the hydro-

gen/helium separation factor was only 2.2.[903] Gryaznov reported that a 1 mm

palladium alloy film magnetron sputtered onto polyarylide was hydrogen

permselective and above 100�C the composite membrane had a higher hy-

drogen permeability than the polymer itself.[44,62,904,905] Gudeleva et al. con-

ducted electrochemical hydrogenation of sodium p-nitrophenoxide over a

cation exchange resin with a 0.4 mm palladium coating[906] and also with other

palladium-containing membranes.[907]

Metals can be interdispersed within a polymer to increase the hydrogen

permeability.[908] Gao et al. incorporated palladium into a poly(phenylene

oxide) film that had a hydrogen/nitrogen permselectivity of up to 135.[909] The

membrane was used for selectively hydrogenating cyclopentadiene at 40�C and

0.1 MPa. Fritsch and Peinemann cast polymer membranes containing nano-

scale palladium, silver, and Pd/Ag particles.[910] Permselectivities were slight

but the membrane was effective in decomposing nitrous oxide with hydrogen.

1.6 Membrane Characterization

Some of the instruments most commonly used for analyzing palladium

films include scanning electron microscopy (SEM), energy dispersive X-ray

analysis (EDX), atomic force microscopy (AFM), X-ray diffraction (XRD),

Auger-electron spectroscopy (AES), thermal desorption spectroscopy (TDS),

X-ray photoelectron spectroscopy (XPS), transmission electron microscopy

(TEM), and electron-probe microanalysis (EPMA). These tools are indispens-

able for characterizing palladium membranes with respect to morphology,

thickness, grainsize, and types and amounts of impurities. Membrane pro-

perties may depend on fabrication method, or result from testing history, and

influence the performance of the membrane. Information gained from analysis

can be used to improve fabrication and testing procedures.

AFM is useful for determining the surface roughness of a support or

deposited film.[911] Souleimanova et al. used AFM to observe microstructural

evolution during electroless plating to assess how osmosis influences metal
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film formation.[803,804] Optical microscopy of palladium membranes supported

on silica has been used to visualize modes of stress induced buckling,[912,913]

morphological changes during the a!b phase transition,[914] and reflectivity

indicating coating uniformity.[567] EPMA is used to measure elemental

composition over cross-sections. This is useful for estimating thickness and

assessing the degree of metallic interdiffusion in alloy films or interpenetration

of palladium films into metallic or porous supports.[915]

The information gained from these analysis tools can be used to explain

membrane performance and understand metal film formation. For example,

TDS has been used to determine hydrogen binding energies and relate these

to the crystallographic orientation of palladium alloy films.[212,605] XRD is

used to determine grainsize, composition, and crystallographic orientation,

while SEM is invaluable for observing palladium film microstructure and

measuring film thickness. Combined with the appropriate software, SEM

can be used to estimate the size and number of pinholes in a metal film or

porous support.[902]

XPS and AES are surface techniques that can be used to determine types

and concentrations of contaminants and segregation of alloying ele-

ments.[489,916–920] Either method will usually reveal a thin layer of carbon

(and often oxygen, chlorine, and sulfur) on the palladium surface since

palladium collects hydrocarbons from the air.[6,226,305,459,576,921–923] Depth

profiling can be carried out by simultaneously sputtering the sample with ions

and collecting data.[91] This is particularly useful for determining the com-

positional homogeneity of alloy films. Overall film composition can be

measured by dissolution in acid (aqua regia is effective) and performing in-

ductively coupled plasma emission spectroscopy (ICP).[91] Gas chromato-

graphy (GC) is useful for determining gas compositions in membrane reactor

work and permeation experiments.

1.7 Estimation of Film Thickness

The thickness of a film is usually determined from either the weight of

the deposited metal or from SEM micrographs of the film cross-section. X-ray

techniques and profilometry have also been used to estimate film thick-

nesses.[276,567,703] From the authors’ experience, calculation of the thickness by

using the weight difference alone is not always accurate.[569] The deposit

thickness and degree of penetration into pores can vary significantly from

place to place on the substrate and sometimes large nodules (or porosity) can

add (or subtract) to the thickness calculated by the weight difference method

without contributing to the actual, effective thickness.[400,461,569,847,848] While

these features may add increased resistance to hydrogen permeation, hydrogen

might also permeate by short circuit diffusion through the thinner areas of the
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film. Palladium may also penetrate into the pores of a support, contributing to

inaccuracies in film thickness measurements by a profilometer.[924] It is

therefore suggested that film thickness be estimated by more than one method

and the results averaged.

2. FABRICATION OF PALLADIUM
COMPOSITE MEMBRANES

Palladium and palladium alloy films have been deposited by a wide

variety of techniques. Electroless plating, spray pyrolysis, CVD, PVD, solvated

metal atom or co-condensation deposition, impregnation, and electrodeposition

have been used to fabricate palladium composite membranes.

2.1 Electroless Plating

Electroless plating is a prevalent form of palladium membrane

fabrication because of its ease and ability to produce good results. Kikuchi

and Uemiya et al., and Konno et al. were the first to create composite

membranes using electroless plating, depositing thin palladium films (5–20

mm) onto porous alumina or glass supports.[180–182,866] In some cases, their

membranes had infinite permselectivities and were used for various

reactions.[185,186] Collins and Way deposited palladium films between 11–20

mm thick onto asymmetric alumina supports.[273,925] The membranes had high

hydrogen/nitrogen selectivities (up to 1170). Shu et al. have conducted a

number of studies that have contributed to knowledge on electroless plating

methods (see Section Microstructural Evolution During Electroless Plating) as

well as the formation of alloy membranes (see Sections Formation of

Palladium Alloys and Palladium Alloy Membranes).[349,715,734,800–802,882,926–931]

Zhao et al. used vacuum infiltration to plate palladium to a thickness of

1 mm onto a palladium-modified boehmite sol-gel layer.[819] The membrane

peeled during annealing in inert gas so membranes prepared using electroless

plating without vacuum were tested for permeability instead. The hydrogen/

nitrogen ideal separation factor was 23 at a DP of 1 atm and 450�C. Quicker et

al. were able to most consistently produce permselective palladium films using

electroless plating compared to other methods of metal deposition.[436] A � 3

mm thick film on porous (0.1 mm) ceramic had a hydrogen/nitrogen ideal

separation factor of 250 at room temperature.

Huang et al. studied the permeability of 7 and 15 mm thick palladium

films deposited by electroless plating onto a-alumina and supported g-

alumina supports.[270,932] By modeling the diffusion through the palladium

film and the porous support, it was determined that the resistance of the
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support to permeation was substantial. Hsu and Buxbaum deposited palladium

onto various metals and their alloys (niobium, tantalum, vanadium, and

zirconium) with electroless plating to protect them from oxidation and faci-

litate hydrogen transport.[6,99,332,888]

2.2 Electroplating

Electrodeposition can be easily and swiftly carried out on a con-

ducting substrate.[933–935] Nam et al. electroplated Pd–Ni films onto porous

stainless steel supports (modified with nickel powder and electroplated

copper) while evacuating the other side of the support to draw the electro-

plating solution through pores in the substrate and the depositing film,

resulting in a permselective Pd–Ni film about 1 mm thick.[348,876] Current

density was an important parameter affecting film microstructure, hydrogen

permeance, and permselectivity. A hydrogen/nitrogen separation factor of

> 3000 was obtained at 450�C. Quicker et al. developed their own electro-

plating bath recipe for depositing palladium onto porous stainless steel.[436]

Amano et al. tested a 1.2 mm thick V–Ni15 (atom %) alloy foil with a

0.2 mm coating of palladium deposited by pulse electroplating.[334] Below

200�C, permeability was negatively affected by surface contamination, and

cracks developed at 300 kPa of pressure on the feed side. Group VB metals

are also prone to hydrogen embrittlement like palladium.[332] Bryden and Ying

formed nanocrystalline Pd–Fe films using pulsed electroplating that were

more resistant to grain coarsening.[713]

2.3 Physical Vapor Deposition

Moss and Dye, and Peachey et al. studied the purification of hydrogen

through Pd/Ta and Pd/V composite metal membranes.[197,227,309,339–342,936] To

remove the oxide layer before sputtering, the foil was ion-milled with argon in

the same chamber as the sputtering device. Palladium layers (0.1 mm) on each

side of the 40 mm foil were deposited directly after cleaning by e-beam

evaporation or sputtering without breaking the vacuum. Removal of the oxide

layer from both sides of the refractory metal was vital to reduce diffusion

resistance through the membrane. Thus, the permeability of the bare metal foil

was increased ten times over its uncoated value and by a factor of 20 over the

permeability of a 40 mm palladium foil. The hydrogen/helium ideal separation

factor was 50,000. This high value can be expected with a metal foil where the

only leaks will be at the seals and possibly along grain boundaries. The

membrane was stable for 575 h at 300�C. At higher temperatures, diffusion of

the palladium coating into the foil decreased the permeability.
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Weirich et al. utilized Ti–Ni as a foil membrane coated with PdCu40

alloy to protect the surface from contamination during thermochemical water

splitting.[313,937,938] The addition of nickel to titanium obviated the embrit-

tlement problem by reducing the hydrogen solubility while addition of copper

to palladium prevented metallic interdiffusion between titanium and palladium

since copper is much less soluble in titanium.

The primary weakness of Pd/metal composites is that as low as

400�C, metallic interdiffusion between the palladium and metal support per-

manently lowers membrane permeability as the palladium layer diffuses from

the surface into the bulk and loses its efficacy for hydrogen dissocia-

tion.[62,193,197,313,472,801,890,897,939] This problem has been overcome by either

operating at lower temperatures ( < 350�C) or incorporating a thin layer

(permeable to hydrogen) between the palladium film and the metal support

that acts as an impediment to metallic interdiffusion.[62,193,472,674,940,941] Also,

alloying palladium with a metal that is relatively insoluble in the substrate

metal can inhibit metallic interdiffusion.[313] The interface between two metals

can also offer resistance to hydrogen diffusion.[328] Buxbaum and Hsu con-

ducted a permeation study of a Pd/Zr/Pd membrane to estimate the relative

resistances of the different layers to hydrogen permeation.[888]

Franz et al. have fabricated palladium micromembranes with e-beam

PVD onto a perforated silicon nitride/oxide bilayer composite on a silicon

wafer.[912,942,943] A hydrogen/nitrogen permselectivity of 1800 was obtained.

A thin layer of titanium improved adhesion although delamination occurred

when the composite membrane was pressurized from the support side. The

microfabrication process enables heaters and thermocouples to be incorpo-

rated directly into the system. Such microfluidic devices may offer in-

creased efficiency because of thermally enhanced diffusion of hydrogen

towards the hot membrane.[944,945] Cui et al. produced a microreactor in-

corporating a 4 mm thick palladium foil for hydrogen separation during

cyclohexane dehydrogenation.[946]

Mardilovich et al. sputtered tantalum and Pd–Ru onto g-alumina

membranes prepared by annealing anodic alumina discs at 897–947�C to form

a nanoporous layer.[737] The 15 nm tantalum layer was to promote adhesion of

the 210 nm thick Pd–Ru layer. The composite membrane permeated pure

hydrogen at a rate of about 9 mol/m2�s�Pa at 400�C. Quicker et al. used e-beam

vaporization to deposit palladium onto porous stainless steel supports.[436]

However, under the conditions they used, the films were still porous.

2.3.1 Magnetron Sputtering

Xomeritakis and Lin, Jayaraman and Lin, and McCool et al. have

formed alloy membranes by magnetron sputtering (discussed in more detail
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below).[38,276,567,703,947] Jayaraman et al. sputtered palladium onto asymmet-

ric g-alumina supports to a thickness of 500 nm.[567] At larger thicknesses,

intrinsic and interfacial shear stresses caused the film to delaminate.[567]

The optimal deposition temperature of 400�C resulted in increased adhe-

sion due to balanced intrinsic (tensile) and thermal (compressive) stresses in

the film.

Bryden and Ying formed nanostructured palladium films on porous

Vycor glass using magnetron sputtering to obtain a membrane with higher

permeability because of increased hydrogen permeation through the grain

boundaries of the nanocrystalline material.[948] Apparently there were

problems with characterization of the hydrogen permeability due to pinholes

and delamination of the metal layer. Basile fabricated a Pd/alumina membrane

using sputtering except it was also not very permselective because it was

deposited on the outside of a ceramic membrane with large pores.[695]

2.3.2 Ion Plating

Reactive ion plating was utilized by Meunier and Manaud to deposit

nickel and palladium films onto asymmetric alumina supports.[893] First, a thin

layer of TiH2 (0.3 mm) was deposited to promote adhesion of the metal films

deposited by ion plating under an argon atmosphere. The ion-plated metal

films were porous so metal was electroplated on top. The diffusion coefficient

for such a membrane with a 20 mm thick palladium film was determined at

20�C but it was destroyed by the a!b phase transition.

2.4 Chemical Vapor Deposition

Ye et al. were the first to report the formation of a selective palladium

composite membrane using CVD (with PdCl2 as the metal source).[884] Yan

et al. used cross-flow CVD to apply a thin layer of palladium within a porous

a-alumina membrane by placing palladium acetate inside the tube lumen and

heating to 400�C with the pressure lowered on the outside of the tube.[708,949,

950] This process was repeated four times to obtain a 4.4 mm palladium film

within the pores that displayed a hydrogen/nitrogen permselectivity of > 1000.

Schwartz and coworkers formed palladium films using different organomet-

allic precursors reduced at the support surface in hydrogen gas.[117] Membrane

properties were found to be sensitive to deposition temperature, as well as

specific organometallic precursor.

Xomeritakis et al. and Tsapatsis et al. have deposited palladium films onto

asymmetric g-alumina supports by counter-diffusion MOCVD.[38,409,710,947] The
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films they obtained were quite thin (0.5–5 mm) and had some defects since

helium permeated by Knudsen and viscous flow. Hydrogen/helium permselec-

tivity was still moderately high (>200 at 300�C).[409] When palladium is

deposited within the pores of the support, it has been shown to reduce

embrittlement during temperature cycling.[867,951,952] Thinner palladium films

( < 0.3 mm) are also more resistant to thermocycling, possibly due to film/

support interaction.[904,953,954]

Other researchers such as Meng et al. and Huang et al. have deposited

palladium and Pd–Ni films onto asymmetric g-alumina (4 nm pore size)

supports using counter-diffusion MOCVD that promoted metal deposition

within the pores of the membrane support.[952,955] As expected, they found that

Pd–Ni alloy films (4 mm thick) were more permselective and crack-free

compared to pure palladium.[607] XPS showed that no oxygen or carbon

impurities were deposited in the film. Deshpande et al. deposited Pd–Ag films

onto anodic g-alumina followed by sintering of the porous deposit.[956] By

using flow-through aerosol-assisted CVD, they obtained a dense crystalline

film approximately 1 mm thick although some defects were present.

Thin palladium and palladium alloy films deposited by CVD often have

n values greater than 0.5 and closer to 1.[708] This has been attributed to

surface hydrogen dissociation effects becoming more influential in the

permeation process, perhaps because the films are often very thin ( < 5 mm).

The increased resistance to permeation might be due to organics or other

impurities trapped during deposition, although microstructure alone may

account for the decreased permeability. Contamination at the grain boundaries

may also inhibit hydrogen permeation.

2.5 Modification of Porous Supports

Researchers have taken advantage of the high surface mobility of

hydrogen on palladium and have observed increased hydrogen permselectivity

(greater than Knudsen) through porous ceramic, metal, and glass membranes

modified with metal particles or coated with sol-gel layers containing metal

salts.[62,345,417,420,422–425,957] Sol-gel layers containing metals may be deposited

on macroporous supports to enhance hydrogen permselectivity by blocking

defects and facilitating hydrogen surface diffusion.[408,417,420,792,819,958–960]

Chai et al. increased the hydrogen permselectivities of porous alumina

membranes through deposition of boehmite sols containing different

metals.[345,422,423,425] Lee et al. used H2PdCl4 as the metal precursor in an

alumina sol vacuum deposited into the pores of an asymmetric a-alumina

support.[411,961] The pores were then modified with palladium acetate resulting

in a hydrogen/nitrogen ideal separation factor of 5 at 400�C.

PALLADIUM MEMBRANE RESEARCH 47

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
2
4
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

Deng et al. deposited boehmite sols containing palladium, platinum,

copper, or nickel onto a porous alumina membrane.[417] They suggested that

surface diffusion of hydrogen through membranes containing palladium or

platinum was responsible for ideal separation factors greater than those

expected from Knudsen diffusion, in contrast to the membranes modified with

copper or nickel that adsorb hydrogen to a lesser degree and exhibited no

increase in permselectivity. Uemiya et al. have reinforced this important

concept by depositing various platinum group metals into the pores of alumina

supports using MOCVD.[195,400,418,429,430] By partially coating the inner

surfaces of pores in alumina, they determined that selective surface diffusion

of spillover hydrogen plays an important role in mass transfer through the

microcracks in thin and discontinuous metal films, even at high temperatures.

Furthermore, by using metals other than palladium, hydrogen embrittlement

was minimized. The membranes contained pores on the order of 1.6 nm and

gases other than hydrogen permeated by Knudsen flow. However, hydrogen/

nitrogen ideal selectivities up to 240 were obtained. Loss of hydrogen

permeability upon sulfidation of the membranes lent support to the likelihood

of hydrogen surface diffusion as a dominant diffusion pathway.

Zhao et al. also deposited a palladium-modified boehmite sol to form a

g-alumina layer with small pores and to activate the support for electroless

deposition.[819,869,959] Pulling a vacuum on the other side of the porous support

during electroless plating created a palladium film ( < 1 mm thick) that was

impervious to helium at room temperature. The composite membrane had a

hydrogen/nitrogen permselectivity that ranged from 20–130 at 314�C.

Impregnation of a silica/alumina membrane with palladium using palladium

acetate resulted in a hydrogen/nitrogen separation factor of 10 at a transmem-

brane pressure of 110 kPa.[408]

2.6 Novel Techniques

Other methods of metal film deposition have particular advantages.

Spray pyrolysis, high-velocity oxy-fuel spraying (HVOF), solvated metal atom

deposition (SMAD), and impregnation can be used to deposit thin films or

metal particles within pores.[962] Many of these newer methods of palladium

membrane fabrication require further development in order to produce thin

films with the desired properties such as high permselectivity.

Li et al. deposited a Pd–Ag film onto porous alumina by spray pyrolysis

of palladium and silver nitrate in a H2–O2 flame.[963] However, the � 2 mm

thick Pd–Ag film contained defects so the hydrogen/nitrogen permselectivity

was 24 at 500�C. During HVOF, palladium nanoparticles are partially melted

in a flame and strike the support. In this manner, Quicker et al. coated a
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normally difficult to plug porous stainless steel support with a permselective

palladium layer, although it was relatively thick (70 mm).[436]

Basile prepared a solution of solvated palladium atoms by evaporating

palladium and co-condensing it at low temperature in 1-hexene-mesity-

lene.[695,964] Solvated metal atom deposition (SMAD) of palladium was then

carried out by warming this solution in the lumen of the porous g-alumina

support to promote coalescence of palladium on the surface. The resulting

� 0.1 mm thick film initially had infinite hydrogen/nitrogen permselectivity but

was not stable for more than 42 h at 322�C. The hydrogen/nitrogen per-

mselectivity was improved (up to 8.2) by coating the membrane with another

layer of palladium using the same technique.[965] Barbieri et al. also prepared

a 0.1 mm film on asymmetric g-alumina using SMAD.[399,966] However, the

permselectivity of the SMAD membrane was rather low to begin with and

declined further during methane steam reforming at 536�C. Vitulli et al. de-

posited platinum onto a porous silica/alumina support using mesitylene sol-

vated platinum, although permeation was still primarily by Knudsen flow.[967]

Jun and Lee deposited thin palladium films using wet-impregnation de-

position (reservoir method) onto porous stainless steel modified with submi-

cron nickel particles to reduce the pore size.[915] The deposition technique

involved repeated dipping in Pd(C3H3)(C5H5) dissolved in pentane, drying,

and reaction in hydrogen, followed by annealing under hydrogen at 550�C.

The volatile nonpolar solvent helped confine the palladium layer to the surface

of the support through capillary action and evaporation. For a 2 mm thick film,

a hydrogen/nitrogen permselectivity of 1600 was obtained at 450�C. The film

required annealing to increase its gas tightness except the palladium diffused

into the nickel and stainless steel of the support if the membrane was held

above 350�C. Fernandes et al. are experimenting with a unique method of

metal film deposition using organometallic compounds dissolved in supercrit-

ical carbon dioxide.[968]

Kim and Lin deposited palladium inside the pores of a yttria-stabilized

zirconia layer on a porous a-alumina disk by soaking in palladium acetate

dissolved in acetone, drying, and calcining.[415,858] After four cycles the pal-

ladium phase became continuous. The remaining pores were sealed using

yttria/zirconia counter-diffusion CVD and the membranes were tested for

oxygen permeability.[415]

2.7 Palladium Alloy Membranes

Preparation of palladium alloy tubes or foils has been accomplished in

the past by induction melting, casting, and rolling or cold working. Harris and

coworkers argon-arc melted PdAg23 and PdY7.8 (atom %) and homogenized
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the alloys in a vacuum furnace at 950�C for two weeks.[242,969] Foils were then

cold-rolled, with intermediate anneals, to thicknesses of 50–100 mm. The

hydrogen permeability of the Pd–Y membrane was 3.65 times the Pd–Ag

membrane at 300�C and 6.8 bar differential pressure.[970] More recent work

has involved the use of electroless plating, PVD, and CVD to make

membranes of palladium alloys with silver, copper, gold, and nickel. Electro-

chemical techniques for codeposition have been developed, although suc-

cessive single-metal electroless depositions followed by annealing are more

common due to better alloy composition control.

To obtain a homogeneous alloy film, various researchers have used

differing thermal treatment conditions for sequentially deposited metal films.

Uemiya et al. annealed Pd–Ag and Pd–Cu bilayer films for 12 hours at the

temperature limit of the porous glass support (500�C).[179] It was concluded

that a higher temperature was needed to obtain complete alloying so sub-

sequent Pd–Ag films were annealed above 800�C.[185] Kikuchi annealed a

sequentially deposited Pd–Cu film between 300 and 540�C and a Pd–silver

film between 800 and 1300�C.[172] Sakai et al. and Kawae et al. annealed Pd–

Ag at 900�C for 2, and 12 hours respectively.[76,971–974] Keuler et al. annealed

Pd–Ag and Pd–Ni at 650�C for 5 hours in hydrogen while Castelli et al.

annealed Pd–Ag at 650�C for 5 days.[847,848,883] Temperatures above the so-

called Tamman temperature [0.5 Tm (K) where Tm = melting point) of the

lower melting point component where significant lattice migration can occur

seem to be necessary to obtain homogeneity throughout the film cross-

section.[801] Annealing under a hydrogen atmosphere accelerates the metallic

interdiffusion process due to increased atom mobility.[293,801,915]

PVD and CVD have also been used to form alloy membranes. Meng et

al. used counter diffusion CVD to deposit crack-free Pd–Ni films onto porous

alumina. It has been suggested that the effects of hydrogen embrittlement may

be reduced or avoided by deposition within the porous support matrix, possibly

due to microporosity allowing expansion and contraction of the discrete pal-

ladium granules plugging the support pores.[708] Schwartz et al. deposited Pd–

Ru alloy films onto porous alumina using CVD of palladium and ruthenium

acetylacetonates, however, the resulting films were not permselective.[117] Lu

and Lin looked at the deposition of Pd–Ag films using CVD of acetate-based

organometallic compounds.[975] Better control over alloy composition was

obtained by isolating the two precursors as opposed to premixing. A homo-

geneous alloy film was obtained after annealing under nitrogen at 500�C.

Xomeritakis and Lin, Jayaraman and Lin, and McCool et al. deposited

Pd–Ag films onto asymmetric g-alumina supports (3 nm pores) using

magnetron sputtering.[947] The 0.16–0.55 mm films densified upon heating at

300�C and exhibited high hydrogen/helium permselectivity (up to 4000).[703]

One difficulty with PVD is obtaining the desired alloy composition due to
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differing sputtering yields from an alloy target. This can be overcome by

allowing the target surface to reach equilibrium.[703] Target equilibration

before sputtering onto the porous support was crucial to obtain films with the

proper composition.[276] Higher silver contents resulted in greater permselec-

tivity by reducing the formation of microcracks caused by the stress of

hydrogen absorption. Additionally, the hydrogen permeance was not inversely

proportional to film thickness suggesting that hydrogen permeation was

limited by processes other than diffusion through the bulk metal.[703,895]

Surface reactions (or perhaps diffusion through the porous support) may have

been rate limiting. Another observation regarding films deposited by

magnetron sputtering was that the beginning surface roughness of the support

was an important factor in obtaining a defect free and adherent membrane.

Zhao et al. also deposited thin ( < 1 mm) Pd–Ag films onto sol-gel

modified alumina supports using magnetron sputtering.[869] The composite

membrane had a hydrogen/nitrogen permselectivity of about 1000 at 411�C.

Keeping the substrate at a high enough temperature during deposition was

found to improve adhesion and higher silver concentrations increased the

hydrogen/helium permselectivity (up to 3845 at 300�C) by decreasing the

stress during hydride formation that opened up avenues for gas permeation.

Increased hydrogen permeance was observed at larger grainsizes.

Bryden and Ying have experimented with nanocrystalline Pd–Y and

Pd–Fe alloys deposited by pulsed electrodeposition and magnetron sputter-

ing.[506,713,714,976] These alloys have better properties than pure palladium with

regard to formation of the b-Pd hydride, resistance to sulfur poisoning, and

increased permeability. The addition of iron and yttrium to palladium lowered

the critical temperature for the a!b phase transition and stabilized against

grain growth so that the higher permeability of the nanostructured alloy

material could be maintained at higher temperatures. Grain growth began in

PdFe20 and PdY7.8 alloys (atom %) at temperatures above 400�C.[713] Even

though PdY7.8 is 3.65 times as permeable as PdAg23 at 300�C and a pressure

differential of 689.5 kPa, it was found to be prone to surface contamina-

tion.[242,970,977] Al-Shammary et al. conducted hydrogenation of ethylene on a

PdY7.8 membrane and discovered that it was easily contaminated and

hydrogen, vacuum, or air could not restore the original permeability. Carbon

buildup actually had a positive effect on the reaction but eventually caused the

membrane to rupture.

2.8 Control of Film Microstructure

The importance of palladium film microstructure on composite

membrane performance has been recognized and studied by many researchers
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in the field.[327,377,400,409,442,560,567,800,801,803,804,915,927,947,948] Work has focused

on film deposition methods to control grainsize, adhesion, and film porosity.

In turn, these characteristics determine membrane durability, permselectivity,

and hydrogen permeability.

Shu et al. recognized that film delamination was related to stress in the

film caused by the different thermal expansion coefficients of the substrate and

palladium.[801] They sought to mitigate this problem by first conducting

electroless plating with an electroless palladium bath that produced a more

porous, stress absorbing, and well anchored layer followed by a more dense,

permselective layer of palladium.[930] Jayaraman et al. found that films

deposited by magnetron sputtering at room temperature peeled from the

surface of the porous g-alumina support at thicknesses greater than 300 nm.

Such adhesion problems have been related to higher stresses in thicker films

and defects in the surface of the porous support.[703,867] With electrodeposited

films, stress decreases with increasing grainsize and the tensile stress is

greatest when the film becomes continuous.[978] Using pulsed electrodeposition

and magnetron sputtering, Bryden and Ying have deposited nanocrystalline

palladium and Pd–Fe films with higher permeability because of a higher

percentage of grain boundaries.[713,714]

2.9 Membrane Stability

The thermochemical/mechanical stability and hydrogen permeability of

the palladium film and support determine membrane performance and

usefulness. For reactions such as steam reforming or partial oxidation (POX)

of methane, operation of the membrane at high temperatures (� 550�C) and

pressures (>20 atm) is often required. Loss of permselectivity towards

hydrogen at high temperature has been a problem with composite membranes

on both porous ceramic and stainless steel supports, predominantly under

dehydrogenation conditions. In some cases, decomposition of a palladium

membrane was greatly accelerated by coking at temperatures above

� 500�C.[199,461] Damle et al. studied the stability of various inorganic mem-

brane materials in coal gas including a palladium foil and found that it melted

above 650�C and deformed when exposed to hydrogen sulfide.[192,854] Con-

centrations of hydrogen sulfide as low as 1 ppm will greatly reduce the hy-

drogen permeability of palladium or Pd–Ag foils.[979] Operation in a catalytic

fluidized bed or other abrasive environment (such as fine ash from gasified

coal) may erode palladium membranes.[192,980]

Another concern is microstructural changes in the thin film of a

composite membrane. The micro- and nanocrystalline grainsizes of palladium

films deposited by electroless plating and other methods can be expected to
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sinter and conglomerate during operation at high temperature because of the

thermodynamic instability due to free energy present in the large volume

fraction of grain boundaries.[948,981] For example, Bryden and Ying noticed

grain growth in nanocrystalline palladium at 200�C.[948] Combined with a high

contact angle (poor wetting) of palladium on ceramics commonly used as

supports, conglomeration and spalling with corresponding pore formation will

be observed.[569,982] The palladium film is also more likely to open up where it

bridges pores in a support.[304] Rate of pore formation in the thin film of a

composite membrane is also proportional to thickness.[569] Höllein et al.

determined that a palladium thickness of > 7 mm was required to achieve

stable and permselective operation above 400�C for a film deposited by

electroless plating onto a porous alumina tube.[983] For comparison, relatively

thick � 20 mm palladium films on porous stainless steel were stable up to

700�C and appeared to be indefinitely stable during long-term service under

solely hydrogen or nitrogen at 450�C.[53,304] A magnesia 15% yttria mem-

brane coated with 10 mm of PdRu6 was stable at 700�C for 1000 hrs.[62]

Palladium alloy films containing elements having higher melting points than

palladium may extend the temperature range at which composite membranes

can operate.[613]

The Sn/Pd activation/sensitization technique used prior to electroless

plating may increase the defect formation rate in Pd/a-alumina composite

membrane films at high temperature (>550�C).[569,984] Tin, with its low

melting point, appears to cause pore formation or loosen the bond between the

palladium film and the porous support. Similar membranes prepared by

Quicker et al. were stable up to 620�C for at least 100 hours although pinholes

formed at 850�C after only 2 hours.[436]

In the absence of reaction, simultaneous decline in hydrogen flux and

increase in the flux of other gases is often observed at temperatures above

� 550�C. Palladium films on porous stainless steel supports simultaneously

lost hydrogen permeability while nitrogen flux increased at temperatures above

700�C.[304] While the precise mechanism for this phenomenon has not been

elucidated, Yan et al. described it as sintering of the palladium grains.[949]

Keuler et al. noticed agglomeration of palladium during heat treatment at

650�C.[847] Palladium sinters at temperatures as low as 200�C through grain

boundary diffusion.[948] A report on platinum sintering at temperatures of

400–500�C indicated that a decrease in surface area occurred through more

ordered packing of atoms in the crystal lattice and a decrease in the number of

defects. With some palladium alloys, ordering at certain temperatures may

increase or decrease hydrogen solubility and permeability.[40,204,306,554–566]

Often either an increase or decrease in hydrogen or nitrogen

permeability is observed during the start-up period of membrane testing. Li

et al. saw hydrogen flux increases through thin palladium films on porous
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stainless steel or a-alumina upon heating to 450�C and assumed that this was

due to sintering of the palladium crystallites and reduction of a thin palladium

oxide layer.[879] This presumably resulted in a decrease in the intercrystalline

space, thereby enhancing hydrogen permeation. They also suggested that

pinhole formation was due to impurities incorporated into the palladium film

during electroless plating. Mardilovich et al. noted a hydrogen flux decrease

during the first 50 hours of operation followed by stability at 350�C with � 20

mm palladium on a porous stainless steel support.[304] Speculation was that

densification resulting in a loss of surface area occurred at the Pd/stainless

steel interface.[304] The hydrogen flux through a Pd/Ta/Pd membrane

decreased 15% over 31 days of operation at 420�C, possibly stemming from

metallic interdiffusion.[6]

On porous stainless steel supports, decrease in hydrogen flux at and

above 550�C has been linked to metallic interdiffusion of constituents from the

stainless steel into the palladium film.[304] In contrast, palladium deposited onto

hydrogen permeable dense metal supports (like vanadium or tantalum) begins

to diffuse significantly at lower temperatures (around 400�C).[227,309,472] One

solution to this problem is to deposit a hydrogen permeable barrier (such as

alumina) between the palladium film and the metal support to inhibit metallic

interdiffusion.[44,193,450,472,801,985] Coating the surface of porous stainless steel

supports with TiN or tungsten (0.8 mm) prior to coating with palladium has also

been effective.[62,801] Ma et al. fabricated Pd/stainless steel membranes that

were stable for more than 6,000 hours at temperatures up to 450�C.

Metal deposition methods have a strong influence on membrane

characteristics. Varma and coworkers invented the technique of forming

palladium films under an osmotic pressure gradient where electroless plating

solution and a much more concentrated solution are on opposite sides of the

activated porous support.[198,803–806] In most cases they used 6 or 9 M suc-

rose solution. Imposing an osmotic pressure gradient promotes mass transfer

to the porous surface during both surface activation and electroless plating

and provides several benefits including smaller grainsize, reduction in

porosity, and densification of the plated film.[803] Additionally, deeper

interpenetration of the palladium film into the pores contributes to thermal

stability and adherence.[198,804]

Li et al. used osmosis to plug the defects in a Pd/a-alumina composite

membrane, resulting in a 10 mm thick film with a hydrogen/nitrogen

permselectivity of 970.[278,986] They used a concentrated NaCl solution on

the opposite side of the membrane as the electroless solution during plating.

While using salt solutions created a high osmotic pressure driving force and

resulted in a thinner, more dense palladium film, another report indicated that

incorporation of alkaline-earth metals into the palladium film significantly

reduced the hydrogen permeability.[117]
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2.10 Alternatives to Palladium

Aside from polymers, various hydrogen separating membrane materials

have been developed in the search for competitive substitutes for costly

palladium.[987,988] These can be categorized as either being based on silicon

(for example SiO2 or SiC),[38,117,122,199,989–998] zeolites,[119,120] carbon,[116,999,

1000] other metals such as nickel,[313,410,419,1001,1002] amorphous metals,[1003–

1008] proton-conducting oxides,[1009–1013] or metal hydrides.[1014–1017] For

example, the alloy LaNi5 has a high hydrogen absorption rate and is

resistant to thermal cycling.[1018,1019] Carbon membranes are selectively

permeable to unsaturated hydrocarbons, carbon dioxide, or hydrogen sulfide

by surface adsorption and flow, facilitating their separation from other gases

such as hydrogen.[1000,1020–1024]

Nickel is a possible substitute for palladium.[488,1025] Although it is

substantially less permeable, it is also a fraction of the cost. Xue and Deng

fabricated an amorphous Ni–B/alumina composite membrane that had high

hydrogen permeability (� 3 mol/m2�s at 250�C and DP = 250 kPa) and the

ideal separation factor for hydrogen was above the Knudsen value.[419]

Vacuum was applied before and during electroless deposition to remove

trapped air bubbles and facilitate penetration of the metal into the pores.

Compared to a Ni–P/alumina membrane,[1026] the Ni–B film did not expand

or contract during heating so the selectivity remained higher until

crystallization set in above 300�C. The membrane was used in ethanol

dehydrogenation.[1027] Enick et al. modeled the water–gas shift reaction taking

place without catalyst at very high temperatures (>700–900�C) over a nickel/

proton-conducting oxide (BaCe0.80Y0.20O3) composite membrane.[1009] At high

temperature, the equilibrium constant is small but the kinetics are fast. The

membrane permeance approached that of palladium at high temperature.

Hara et al. measured the hydrogen permeability of amorphous Zr36Ni64

and although it was an order of magnitude below PdAg23, its cost was two

orders of magnitude less.[1008] Sakaguchi et al. deposited layers of V2O5,

copper, and LaCu5 onto polyimide films and obtained hydrogen separation

factors > 100 at 45–95�C.[1028] The membrane seemed to be resistant to

carbon monoxide poisoning.

3. APPLICATIONS FOR PALLADIUM MEMBRANES

3.1 Palladium Membrane Reactors

Hydrogen is an essential feedstock in the refining and chemical indus-

tries.[78] The chief source of hydrogen is from steam reforming of light hy-
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drocarbons such as natural gas followed by the water–gas shift reaction.[1029]

Both reactions have been extensively studied both theoretically and exper-

imentally in membrane reactors.[1009,1030–1043] Hydrogen is used for alcohol

synthesis, production of ammonia and pharmaceuticals, hydrocracking, hy-

drotreating, Fischer–Tropsch synthesis, and for liquid-phase hydrogena-

tions.[79,1044–1048] In a palladium membrane reactor (PMR), thermodynamically

limited hydrogenation or dehydrogenation reactions can be driven towards the

product side by addition or removal of hydrogen from the reactor. This trans-

lates into greater per-pass conversion, higher selectivity (restraining of side

reactions), operation at lower temperature, less catalyst, smaller recycle

stream, and fewer downstream separations.[4,58,157,164,168,169,176 – 178,195,302,461,

645,877,1029,1037,1049 – 1060] Research on PMR’s has been thoroughly covered

by numerous review articles and an impressive number of studies have been

reported.[30,35,41,44,46,51,55–58,62–65,68–70,163,1057,1061–1072] Gryaznov et al. and

Itoh et al. have carried out a large number of experimental and theoretical

studies. [4,30,44,58 – 62,100,101,104,106 – 110,112 – 114,139,161 – 164,166,168,171,210,274,292 –

295, 444, 483, 487, 495, 496, 498, 502 – 504, 566, 628, 645, 677, 691, 737,862,903,904,1044,1050,1055,1057,

1072 – 1151]

A hydrogen permselective PMR may be used to keep two streams of

different phases separate. Thus a PMR can alleviate the necessity of separa-

ting the catalyst from the product in the case of liquid-phase hydrogenations

such as in the production of food-grade and lubricating oils, synthetic

odorants, and pharmaceuticals.[60,168,503,1072,1122,1152] A metal catalyst can be

incorporated into a porous support but the membrane is not necessarily hy-

drogen selective. In this case the membrane serves as a three-phase contactor

with reduced mass transfer resistance where the hydrogen meets the liquid

inside the pores.[49,790,1071,1115,1153–1155]

Vacuum or a sweep gas can also increase the reaction rate by decreasing

the hydrogen partial pressure on the permeate side, increasing the flux driving

force and the permeation rate of hydrogen through the membrane.[175 –

177,875,965] A sweep gas may be necessary at low transmembrane pressure

differentials to drive hydrogen permeation.[877] Of course using a sweep gas

necessitates another separation step. Using steam as a sweep gas lessens this

problem.[195,196,422,424,1156,1157] Vacuum is too expensive for most industrial

applications but can be useful in experimental studies.

One way that heat can be supplied to an endothermic dehydrogenation

reaction is by combusting the generated hydrogen with oxygen or carbon

monoxide on the other side of the membrane.[163,165,170,171,243,271,298,333,449,

872,873,888,1056,1072,1120,1130,1136,1148,1158 – 1168] Such reaction driven hydrogen

transport through a palladium membrane is faster than diffusion into a sweep

gas since the driving force for permeation is increased by making the partial

pressure of hydrogen approach zero on the permeate side.[457,1127,1169–1171]
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Oxidative partial dehydrogenation of isobutane has been conducted in a PMR

to provide the energy for a simultaneous endothermic dehydrogena-

tion.[1172,1173] One thing to consider when using air is that oxidation of the

palladium surface may reduce permeation below 200�C.[298] Reduction of the

palladium surface with hydrogen prior to reaction has been found to prevent

oxidation of the membrane by sweep gas containing oxygen.[1167]

A palladium membrane may be retrofitted to an existing process to

increase efficiency.[1174] This ability to augment existing equipment and de-

bottleneck is a major plus of membrane technology.[90] A bank of palladium

membranes connected ex-situ between two reactors would serve as an inter-

stage hydrogen remover to increase yield in the second reactor.[199,1060,1175]

Operating the membrane apart from the reaction zone may also reduce mem-

brane coking.

There are particular issues associated with PMR operation that need to

be addressed in order to receive industrial acceptance. For instance, predicting

how existing industrial catalysts will perform in a membrane reactor may be

troublesome due to the different pressure, temperature, and compositional

conditions. This can influence the kinetic reaction mechanism.[1042] Either

reaction kinetics or membrane permeability will determine the reaction rate in

a PMR.[1176] Catalysts that are not active enough may restrict PMR

performance when the rate of hydrogen permeation exceeds the rate of

product formation by the catalyst. Conversely, a palladium membrane that is

too thick may not have ample flux to reach the full potential of the

catalyst.[172,271,449,1157] Catalysts may have to be developed specifically for

PMR use to meet these challenges.

Permeability of hydrogen through palladium should be inversely

proportional to film thickness so the thinner the film the faster the

reaction can proceed with many thermodynamic equilibrium-limited

reactions.[186,271] By reducing palladium film thickness, higher rates of

conversion can be attained since the reaction is usually constrained by the

permeation rate of hydrogen through the membrane and not the catalyst

activity.[88,1173,1177] The rates of reaction and permeation should be evenly

matched in order to operate most efficiently, so that neither thermodyn-

amic nor kinetic limitations are encountered.[1059,1165,1178] Raybold and

Huff studied oxidative dehydrogenation of isobutane to isobutylene over

different catalysts.[1173] Removal of hydrogen through a palladium foil (25

or 75 mm thick) reduced the reaction temperature and improved the

isobutylene yield. Due to fast reaction kinetics the performance was

constrained by hydrogen extraction through the membrane. One way to

estimate the degree that membrane permeation is rate-limiting is to

compare the partial pressure of hydrogen in the reactor effluent to that of

the permeate.[1059]
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3.1.1 Fluidized Beds

Palladium membranes have been incorporated into fluidized beds to

capitalize on the advantages of this type of reactor design.[1179] For instance,

smaller catalyst particle sizes can be used to overcome diffusional limitations,

and heat transfer problems in endothermic reaction systems can be

improved.[1029] Adris et al. theoretically and experimentally examined methane

steam reforming and proved that very high conversion (>90%) can be realized

in a fluidized bed membrane reactor at the conditions of an industrial

reformer.[692,1029,1157,1180] Twelve palladium membranes with 200 mm thick

walls crossed the fluidized bed. The reactor was able to operate 40�C lower

and with both smaller reactor and catalyst volumes than the conventional

process. Increased pressure decreased conversion in the case of the fluidized

bed described above because of the inadequate area of the hydrogen

permeators.[692] A model by Gobina of membrane separation in a fluidized

bed that produced syngas by partial oxidation of methane showed a 6.5%

increase in conversion compared to the conventional process.[1179] Ostrowski

et al. catalytically oxidized methane to syngas in a plug-flow reactor and a

fluidized bed containing a Pd/silicalite/porous stainless steel membrane.[118]

3.1.2 Modeling

Mathematical modeling is a powerful tool in PMR research. Models

allow the investigation of parameter spaces that are dangerous or time

consuming to carry out experimentally while revealing important interelation-

ships between variables that may not have been apparent. Model results are

useful to compare against experimental results and may often be used predict

performance with confidence.

Using a model, Abdalla et al. studied ethylbenzene dehydrogenation in a

fluidized bed with 0.5 mm Pd/composite membranes inserted into the

catalyst.[176–178,1181] High conversion was achieved (96.5%) and product

selectivity was increased because hydrogen removal partially eliminated the

side reaction of ethylbenzene hydrogenation to toluene.[178] Hermann et al.

studied the same reaction with a 0.2 mm porous stainless steel membrane

coated with 10 mm of palladium.[1165] Their model revealed that the reaction

was kinetically controlled so by increasing the pressure in the PMR they

increased conversion without sacrificing selectivity due to repression of side

reactions through hydrogen extraction. Oxidizing the permeated hydrogen with

air resulted in higher styrene yields compared to evacuation of the permeate or

using an inert sweep gas. In a theoretical study of methane partial oxidation,

Mleczko et al. looked at the effect on the syngas yield of a bundle of
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palladium tubes in a catalytic fluidized bed.[980] A simulation with a 5 mm

palladium composite membrane enabled yields above the thermodynamic

predictions for the feed although it was important to operate under the right

hydrodynamic conditions in the bed.

Le Châtelier’s principle states that for equilibrium controlled reactions,

products are favored by decreased pressure when the number of moles

increases during reaction.[200] However, PMR models often predict and

experiments verify increased conversion resulting from higher rates of hy-

drogen extraction through the membranes at higher pressure.[184,1054,1157,1182]

The higher the pressure, the faster the hydrogen permeates through the

palladium membrane, permitting further reaction.[184] A reaction may take

place at a higher pressure in a membrane reactor than in a conventional

reactor with the advantage of reduced reactor volume. Methanol decomposi-

tion was enhanced by increasing pressure because of hydrogen removal from a

PMR at 220�C.[1183] Methane steam reforming can be performed in a PMR at

lower temperature (500�C) and higher pressure with conversions much higher

than equilibrium.[172,195,1184,1185] The palladium membrane can also be used

to increase the space velocity with its higher reaction rate per unit

volume.[53,1184] Reduced reaction temperatures are advantageous as well.

Cheaper materials can be used for reactor construction and catalysts may

better resist sintering, avoid coke formation, and need to be regenerated

less frequently.[42,1071,1184,1186]

Some mesoporous and microporous membranes modified with metal

crystallites instead of continuous palladium films are permselective enough to

increase equilibrium-limited reaction conversions above the thermodynamic

limit of the feed composition.[49,417,420,422,424,863,980,1042,1187,1188] However,

when permselectivity is regulated primarily by Knudsen diffusion, reactant slip

to the permeate side can defeat the goal of the membrane reactor to achieve

yields greater than that possible with a given reactant mixture in a normal

reactor.[158,1053,1161,1189–1192] High hydrogen permselectivity is required to

realize significant increase in conversion.[1064,1066,1177]

3.1.3 Membrane as Catalyst

In general, the relatively small surface area of the palladium membrane

calls for the use of a catalyst.[1151] However, under certain circumstances,

the membrane itself can be used as the catalyst and many different

palladium alloys are used to catalyze specific chemical reactions. Metals or

alumina have been deposited and diffused into palladium alloy films to

obtain unique catalytic properties.[62,1107] For example, Gryaznov et al.

interdiffused a 100 nm thick cobalt layer into PdRu10 at 400�C for 30 min
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under hydrogen and the foil was used to produce alkenes from hydrogen and

carbon monoxide.[62]

The PMR may couple or ‘‘conjugate’’ reactions where the hydrogen for

a hydrogenation is supplied by a dehydrogenation on the opposite side of the

membrane. [4, 44, 58,162 – 164, 166 – 168, 170, 171, 1051, 1123, 1129,1136,1144,1159,1160,1168,1170,

1193,1194] This has also been termed a bifunctional palladium membrane

reactor.[1144] Since hydrogenations are generally exothermic, it furnishes the

heat required by the dehydrogenation.[169,1144] Similarly, process streams

containing hydrogen could be fed to one side of a PMR to provide the

hydrogen for a hydrogenation reaction. Higher heat fluxes are required for

endothermic reactions carried out in membrane reactors because of accele-

ration of the forward reaction, especially if the kinetics are fast.[175,1195]

Palladium membranes are used to study reaction mechanisms and

kinetics because of the ability to closely control hydrogen concentration on the

surface of the membrane and easily measure hydrogen production from a

reaction on the palladium surface.[113,628,1104,1105,1128,1133,1176,1196 – 1205] Use of

a palladium membrane as the catalytic surface does away with effects due to

catalyst supports and intraparticle mass transfer.[1091] Such experiments are

carried out electrochemically[1047,1206–1208] as well as in the gas phase.[1209]

For example, through isotopic labeling of alcohols, it can be determined which

hydrogens form methane, or water, or permeate through the membrane during

decomposition.[453,1210,1211]

Hydrogen permeated through a palladium membrane is more reactive

than molecular hydrogen adsorbed on the palladium surface and may also react

more selectively in the case of incomplete hydrogenations since the surface

concentration can be controlled.[4,60,113,160,594,628,1057,1072,1080,1084,1085,1097,1106,

1134,1212 – 1218] In fact, bringing hydrogen into the reaction space through the

membrane can multiply the reaction rate relative to feeding hydrogen with the

reactant mixture.[1074,1085,1202] Molecules preferentially adsorbed on the

surface of the palladium film are hydrogenated by atomic hydrogen per-

meating through the membrane.[168,1098,1099] When hydrogen is permeated

from within a metal film for a hydrogenation reaction, the permeation rate has

a strong influence on preventing the formation of surface compounds that

diminish the hydrogen permeability of the membrane.[1217] Once formed

however, surface impurities can severely limit flux.[1198,1219] Hydrogen per-

meated through a palladium foil during thiophene hydrogenation inhibited sul-

fidation of the membrane surface.[1217]

Palladium membrane technology has the potential to hydrodesulfurize or

remove contaminants from process streams more efficiently because of

selective adsorption on the membrane surface.[1220] Certain molecules in a

mixture can be selectively hydrogenated on a palladium membrane such as

hydrocarbons with higher bond order like acetylene, ring structures, or those
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containing sulfur.[30,628,1097,1099,1112,1120,1212,1213,1221,1222] Selective adsorption

of a particular chemical species on the membrane can be advantageous in the

production of high-value-added chemicals where hydrogenation of an

expensive feedstock with high selectivity is desired.[503,1109,1111,1223,1224] In

addition to conserving chemicals and lowering downstream separation

requirements, fewer unwanted byproducts require disposal.[271,1056] This

phenomenon is explicable by the fact that less saturated molecules more

easily form a p-complex during chemisorption while transfer of electron

density to or from the metal depends on temperature.[919,1203,1225] The extent of

adsorption of specific hydrocarbons will also depend on the palladium alloy

and the hydride phase (a or b).[1072,1079,1103] However, sometimes the reactants

or products adsorb on the membrane surface and inhibit hydrogen

permeation.[504,1086] Gryaznov et al. selectively hydrogenated acetylene to

ethylene in an ethylene–ethane mixture[1097] and Itoh et al. looked at the same

reaction over several palladium alloys.[628] Selective hydrogenation of the triple

bond in acetylenic alcohols has been accomplished in the liquid phase.[503]

Arai et al. selectively hydrogenated thiophene over a palladium

membrane and found that total conversion was 5 times higher when hydrogen

permeated through the membrane.[1213,1217] This is because permeated

hydrogen did not have to compete with adsorption of species from the gas

phase that blocked reactive sites on the surface.[1074,1201,1213,1215,1216] Activated

hydrogen from within the metal can also surface diffuse or spillover to and

from catalytic coatings on the palladium membrane surface.[58,200,1028,1214,1226]

Edlund and Pledger used a composite membrane to remove hydrogen during

the thermolysis of 0.84% hydrogen sulfide in methane at 700�C and 689.5

kPa.[449,450] The membrane consisted of a vanadium foil coated with silica,

palladium, and then platinum films. Replacement of the palladium with

platinum allowed operation in the presence of sulfur while the silica layer

prevented metallic interdiffusion between the precious metal coatings and the

vanadium foil. The membrane allowed 35% of the hydrogen sulfide to be

removed from a simulated natural gas stream while loss of methane was

minimal (� 0.5%). Ammonia or chlorofluorocarbons can also be removed

from gas streams in a PMR.[1227–1230]

3.1.4 Hydrogen Production

Various methods of methane utilization have been repeatedly studied

and understandably so, given the vast reserves of natural gas that are

frequently wasted due to the economics of liquefaction and transporta-

tion.[1231,1232] Furthermore, methane steam reforming is a major source of

industrial hydrogen.[46,85] Kikuchi and coworkers have extensively studied this
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reaction using various membranes and obtained greater than equilibrium

conversions at 350–550�C in a Pd/Vycor membrane.[184,195,1031] Galuszka et

al. partially oxidized and dry reformed (with carbon dioxide) methane to

syngas in a PMR at 350–550�C and 550–675�C respectively.[461] The

membrane was a 10–15 mm thick film deposited by electroless plating onto an

asymmetric a-alumina tube with 0.2 mm pores. The hydrogen/nitrogen

permselectivity was close to 100%. Conversions above those predicted by

equilibrium were obtained, however, severe carbon deposition was encoun-

tered that destroyed the membrane.

Garnier et al. dissociated methane over a Ru/alumina catalyst in a PMR

to deposit carbon species and recover hydrogen followed by rehydrogenation

of the carbon species to higher hydrocarbons.[877] The membrane lowered the

conversion temperature of methane and greatly increased conversions and se-

lectivity to ethane and propane. Surprisingly, no deactivation of either mem-

brane or catalyst was noted. Likewise, Ishihara et al. decomposed methane

over a Ni/SiO2 catalyst bed around a 250 mm thick PdAg10 tube.[1233] Re-

forming in PMR’s for hydrogen production is discussed further in Section 3.2,

The Role of Palladium Membranes in Fuel Cell Implementation.

3.1.5 Membrane Stability

The ability to operate a palladium membrane for extended periods of

time in a given situation is essential. Therefore, comprehension of modes of

change and failure is important. Adsorption of impurities as well as changes

in surface chemical composition due to segregation of alloying elements may

alter the permeability and catalytic properties of the palladium mem-

brane.[211,242,444,487,496,843,916,917,919,920,926,1138,1234 – 1237] Grain boundary

segregation of impurities can weaken palladium membranes.[50] The com-

position of gases in the reaction mixture can cause a particular metal to

segregate to the surface, thereby changing the catalytic activity and hydrogen

permeability of the membrane during operation.[502,1238,1239] Atomic ordering

during operation can change the hydrogen permeability of a membrane

as well.[40,204,306,554–566]

One problem is that in conventional reactors the presence of hydrogen

often prevents carbon buildup and its withdrawal through the membrane

causes coking of the catalyst and membrane surface, especially during ex-

posure to unsaturated hydrocarbons.[69,192,443,474,1043,1060,1186] A higher steam

to hydrocarbon ratio may be required in practice in order to avoid this problem

even though studies indicate that lower steam to hydrocarbon ratios may result

in equivalent performance in a membrane reactor.[175,187,1035,1037,1240] Higher

steam/hydrocarbon ratios dilute the hydrogen and reduce the driving force for
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permeation, limiting PMR performance.[88] Simulations have shown that

hydrogen removal will also increase the sulfur coverage and carbon deposi-

tion on nickel catalysts in a membrane reactor for methane steam reform-

ing.[1241,1242] This problem may be mitigated by operating at higher tem-

peratures and pressures while maintaining the proper ratio of components in the

feed.[1041,1243]

Carbonaceous and graphitic deposits decrease membrane permeability

and may also destroy the palladium film (discussed in more detail above).[242]

The mechanism for this is unclear although carbon is known to be able to

diffuse through the palladium lattice.[474] Even though the presence of steam in

the membrane reactor can help lessen this problem, special catalyst tuning may

be required for maximum PMR performance.[156,199] In one case, ethanol

dehydrogenation at 350�C formed a carbonaceous layer on a palladium

membrane.[1210,1211] Supplying enough oxygen to the feed to react with

adsorbed carbon monoxide quelled carbon formation that inhibited hydrogen

permeation.[467,1244] Steam or oxygen have been reported to have a detrimental

effect on palladium membranes although there is little information published

about this phenomenon.[5,432,559]

3.1.6 Economic Evaluations

Very high yields can be obtained in membrane reactors with appropriate

operating conditions. However, to be most useful, PMR performance should be

compared to industrially pertinent space velocities and throughputs of

conventional processes.[70,117,271,436,1058,1059,1157,1165,1175,1178] In this regard,

Criscuoli et al. overcame the equilibrium carbon monoxide conversion in a

single low temperature water–gas shift reactor with a conversion of 95.3%

compared to a process consisting of a high and low temperature water–gas

shift reactors in series that had a conversion of 91.1%.[1042] Emonts et al.

estimated that palladium films less than 1–5 mm are necessary for affordable

on-board hydrogen purification[1245] while Crisciuoli et al. came up with a less

stringent requirement of < 20 mm for membranes to compete with industrial

hydrogen production.[302] Athayde et al. estimated that the cost of a palladium

membrane unit is proportional to the square of the palladium film thickness.[91]

The above cost estimates do not take into account the possibility of recycling

the palladium.

Aasberg-Petersen et al. conducted a feasibility study comparing the usual

methane steam reformer to a membrane reactor based process.[88] They

concluded that very thin ( < 2 mm) and completely permselective palladium

membranes will be required to make membranes economically competitive

with conventional processes. Temperatures of 600–650�C would also have to
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be employed in the membrane reactor and low electricity costs would be a

prerequisite to make the obligatory recompression of the hydrogen economical.

Roy et al. simulated methane steam reforming with membranes inserted into a

fluidized bed.[1246] The results also indicated that a high flux (thin) membrane

was imperative for the process to be feasible. The primary advantages of the

fluidized bed membrane process were that it operated 225�C lower than the

usual process (675 vs. 900�C), and the membranes replaced pressure swing

adsorption as the means of separating hydrogen. A major disadvantage was

that the pure hydrogen obtained from the membranes required energy and

capital intensive recompression. The overall system including membranes

took less capital and operating costs were lower than conventional methane

steam reforming.

Another commercially important reaction is the dehydrogenation of

ethylbenzene to styrene.[169,176–178,271,401,1047,1051,1121,1165,1181,1190,1247–1252]

Using a model of ethylbenzene dehydrogenation, Abdalla et al. estimated

substantial cost savings through use of a PMR with a 0.5 mm thick palladium

layer.[176,177] Dittmeyer et al. predicted a 4–27% decrease in the amount of

ethylbenzene required to feed a membrane reactor (3 mm palladium electroless

plated onto porous a-alumina) and form the same amount of styrene produced

in the conventional process.[271] They pointed out that both high membrane

permeability and catalyst effectiveness are necessary for industrial use and that

the membrane reactor scheme could not be rationalized based on present

catalyst efficiency and membrane investment. However, Gobina and Hughes

noted that the higher conversions seen in a PMR can save on the costly

separation of ethylbenzene/styrene by vacuum distillation.[46]

3.1.7 Summary

Despite the negative aspects that must be overcome such as membrane

cost and deactivation, the positive side of PMR technology includes the

production of pure hydrogen, the elimination of process steps, and ultimately

the conservation of energy and/or capital.[53] As a case in point, a PMR may

function at lower temperatures with the same or greater selectivity and higher

per-pass conversion than a conventional reactor, thus reducing the number of

energy intensive separations.[158,172] Selective hydrogenation of a valuable

feedstock directly to the product would minimize waste and reduce or

eliminate process steps such as separation and recycle. Of course the benefits

of PMR’s hinge on finding ways to reduce coking and poisoning of both the

catalysts and the membrane surface as well as, most importantly, development

of a durable hydrogen separating membrane with a very thin palladium layer.

Economic incentives exist for palladium membrane use in the chemical
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industry. It is hopeful that with further research they will meet the rigorous

operating and cost demands.

3.2. The Role of Palladium Membranes in Fuel Cell Implementation

Palladium alloy composite membranes are a promising technology for

integration into a reaction and/or separation process involving hydrogen

generation. Palladium membranes possess high flux and permselectivity as

well as the ability to operate at high temperatures and pressures. These

characteristics make palladium membranes suitable for stationary and

vehicular fuel cell systems. General consensus in the scientific community

is that the potentially disastrous consequences of global climate change may

only be remedied by curtailing the production of greenhouse gases.[1253,1254]

Carbon dioxide is the primary human generated greenhouse gas of concern,

due to its huge volume of emissions worldwide. Electricity production,

industry, and internal combustion engines in motor vehicles constitute the

largest sources of carbon dioxide produced by human activity. A PMR may

assist in efficient generation of pure hydrogen from fuels for fuel cell

consumption. Additionally, the carbon dioxide rich retentate from a PMR may

be further compressed and injected into certain geological formations for

carbon sequestration.

With the forthcoming industrialization of less developed countries, and

the expanding growth of the global economy and population, the need for safe,

clean, and reliable power sources will steadily increase. For instance, the

automobile population is expected to double in the next 20 to 30 years,

probably offsetting any gains in fuel efficiency and emission controls.[1255]

Tightening of environmental laws is apt to continue with mounting pressures

on natural resources and the realization of environmentally sustainable

practices becomes necessary for maintenance of quality of life. It is paramount

to reduce the environmental impacts associated with energy extraction and use,

especially with increasing exploitation of fossil fuels.

Air pollution is an unhealthy problem in the airsheds surrounding

many major cities. To reduce production of carbon dioxide and other

pollutants, vehicles must be redesigned for efficiency and minimal

emissions. There are a few workable prototype vehicles suitable for large-

scale production that are more energy efficient and create less pollution.

Energy or power is supplied from various sources including batteries, fuel

cells, hydrogen, liquids derived from biomass (such as alcohols), natural gas,

solar panels, and optimized internal combustion engines. Hybrid vehicles

with combinations of power systems reduce emissions by burning cleaner

fuels and/or making the most efficient use of fuel or energy. Hybrids that
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combine batteries and an internal combustion engine are currently being

mass-produced by Honda and Toyota. Electric vehicles (eV’s) powered

solely by batteries are also becoming more prevalent with the development

of storage batteries with higher energy densities.

The fuel cell vehicle is an attractive option for transportation. Fuel cells

tend to be more efficient than internal combustion engines because the output

is mostly electrical energy while internal combustion engines produce some

mechanical power and a lot of waste heat. Hydrogen might be stored on board

in the liquid or gaseous form.[1256] Gas necessitates high-pressure containment

while liquid hydrogen must be stored in a cryogenic vessel. Hydrogen can also

be absorbed in a hydride bed but weight, size and cost are still problems. In

the latter case, intermetallic hydrides or carbon nanotubes may help to make

hydrogen storage more compact and lightweight.[684,1257]

Alternatively, to provide hydrogen, a fuel would react over a catalyst bed

in a PMR and purified hydrogen would be obtained through a palladium

membrane.[227,340] The hydrogen would react with air in a proton-exchange

membrane (PEM) fuel cell to power an electric motor. During idling, batteries

could be charged for later assistance with acceleration or to supply power

during the next warm-up period. Only recently have technological advance-

ments, particularly in materials science, made the fuel cell close to being

feasible for mass production. Presently, the higher cost of hydrogen or

alcohols as fuels compared to gasoline as well as the cost of fuel cells limits

commercialization. Development of a module for generating electricity has

hinged on factors such as a durable and compact fuel cell, high yield catalysts

for producing hydrogen from liquid fuels, and an effective system for pre-

venting impurities from decreasing fuel cell performance.

PEM fuel cells (PEMFC) are lightweight, power dense, and operate at

fairly low temperatures (� 80�C) making them suitable for portable

applications.[43] They consist of a polymer electrolyte membrane that is

permeable to H + ions, sandwiched between the two electrodes. Although the

amount of precious metal (platinum, palladium, or ruthenium) catalyst required

within the polymer membrane has been drastically reduced, it is still a major

cost of the PEM fuel cell module. Low temperature (� 100�C) fuel cells that

convert fuels directly into electricity are still under development. In a direct

methanol fuel cell, a palladium film between the anode and cathode can

prevent diffusion (or crossover) of methanol to the cathode.[287,1258–1260]

Pure hydrogen is the optimal fuel for the PEM fuel cell, however its

distribution and storage in either the liquid or compressed gaseous form may

require prohibitive capital investment. Meanwhile, expansive infrastructure

already exists for liquid fuel distribution.[1261] Combined with the fact that

hydrogen storage cylinders are heavy and bulky, in-situ generation of hy-

drogen from a liquid fuel seems to be an attractive option in the interim.[1262]
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The potential applications for fuel reforming range beyond vehicular fuel-cell-

based propulsion systems. Within this decade, stationary small to medium

size reformer and fuel cell modules for home or business use may decen-

tralize the power grid and provide efficient, high quality, and uninterrupted

electricity. On a large scale, providing hydrogen to a fuel cell via coal

gasification and purification through a palladium membrane would increase

the overall efficiency of an integrated gasification combined-cycle (IGCC)

coal power plant.[192,1263]

Alcohols are convenient fuels because of moderate reforming tempera-

tures (conducive to quick start-up) and production from abundant natural gas

reserves (possibly through partial oxidation) or from fermentation or

gasification of plant matter and organic refuse.[360,1264–1270] Copper/zinc oxide

catalysts are a promising choice for the methanol steam reforming

reaction:[878,1271–1274]

CH3OH þ H2O $ 3H2 þ CO2:

Lin and Rei obtained over 70% recovery of the hydrogen from methanol

by using a PMR.[878] To improve the efficiency of the process, the unreacted

methanol and hydrogen from the membrane reactor and the fuel cell were

oxidized to provide heat for the reforming reaction. Such thermal integration is

necessary to drive up the overall process efficiency.[1267] Careful energy man-

agement is essential for achieving high system efficiency, especially in mobile

power plants.

With the proper catalyst and reaction scheme, any hydrocarbon fuel

could be the source of hydrogen.[5,1269,1275] For example, Edlund has

developed a fuel processor that is capable of providing hydrogen from a

variety of hydrocarbons (methane, gasoline, etc.) by steam reforming.[1276] It

utilizes a proprietary hydrogen separating membrane. Murata et al. produced

hydrogen through ethane pyrolysis over a graphite catalyst,[1277] or decompo-

sition of gasoline over a Ni/Ca/C catalyst,[1278] while Midilli et al. recovered

hydrogen through a palladium membrane from hazelnut shells gasified by a

solar collector.[1279] Dehydrogenations and cracking reactions have the advan-

tage of no carbon monoxide generation or water handling issues (storage,

steam generation, recycling).[1275,1280]

With its widespread availability, natural gas is a good choice for small

and medium scale stationary fuel cell units providing decentralized (off the

grid) back up or supplementary power where the waste heat from the high

temperature reforming process (700�C) can be used for residential hot water or

space heating.[1276] Amphlett et al. reformed diesel in a PMR.[1281] They point

out that the main disadvantage of the PMR is the large pressure driving force

(10–15 bar) necessary for hydrogen permeation through the membrane.[1282]
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However, small amounts of unreacted fuel, unpermeated hydrogen, and the

hydrogen rejected by the fuel cell can be combusted in a catalytic burner to

vaporize fuel or water, and heat the reformer to provide energy for the

endothermic reforming reaction.[1245,1261,1280,1283–1285]

Despite the possibility of superior efficiency, fuel cells have several

drawbacks yet to be overcome. One problem for a mobile application is that

fuel cells have a warm-up period and respond slowly to the need for impulse

power. These problems can be alleviated by coupling with a battery or

flywheel although they add weight and cost to the vehicle.[1255] An

autothermal reformer combines reforming and partial oxidation.[1286] Although

reforming alone may be more efficient, partial oxidation is better for providing

the heat required for the endothermic reforming reaction, particularly during

start-up.[1267,1269,1287] Additionally, a larger variety of hydrocarbons can be

employed by using partial oxidation.[1269]

Johnson Matthey is developing an autothermal reactor called the

HotSpotTM that reaches full power in less than a minute by adjusting the

air/fuel ratio.[1255,1261,1262,1269] The partial oxidation and steam reforming

reactions proceed on the same catalyst so that heat is transferred directly from

the exothermic to the endothermic reaction while another catalyst bed

removes residual carbon monoxide for PEM fuel cell use. The overall effi-

ciency of the fuel processor/fuel cell system was 40%, which is comparable to

the upper extent of internal combustion engine efficiency.[1261] Furthermore,

emissions of particulates and other gaseous pollutants are miniscule or non-

existent. Arthur D. Little is working on a portable partial oxidation reactor for

conversion of gasoline and air into a hydrogen rich gas for fuel cell con-

sumption. Numerous patents have been granted for fuel reformers and many

incorporate palladium membranes.[1038,1288–1303]

Another critical problem with the PEM fuel cell is that feed impurities

such as sulfur compounds and carbon monoxide easily poison the fuel cell,

drastically reducing power output.[227,352,457,1269] Purification of hydrogen to

remove carbon monoxide to the less than 2 ppm favored for PEMFC use

can be accomplished in a number of ways.[1261,1267,1269,1304,1305] These

include catalytic, selective oxidation of the carbon monoxide to carbon

dioxide in a preferential oxidation (PROX) reactor,[340,1267] low temperature

shift of carbon monoxide and steam to hydrogen and carbon dioxide,

catalytic methanation,[1269,1306] adsorption on a regeneratable getter, PSA, or

membrane separation.[5,1273,1284,1307]

A permselective hydrogen separating membrane can be used to facilitate

the steam reforming reaction and also prevent carbon monoxide from

poisoning the fuel cell.[1267,1276] The only prerequisite is that the hydrogen

generating reaction take place at high pressure to enable adequate separation

through the membrane.[1245,1267,1276] A membrane reactor/hydrogen separator
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eliminates the need to remove carbon monoxide in a bulky PROX reactor

following the reformer.[227] A hydrogen/carbon monoxide separation factor

greater than 1000 is necessary to lower the carbon monoxide content of the

hydrogen so that it does not reduce PEMFC performance.[1275] Other gases are

excluded from the fuel cell by a palladium membrane as well, resulting in high

operation efficiency. Alkaline fuel cells that are poisoned by carbon dioxide

can also be supplied with membrane-purified hydrogen.

Amphlett et al. calculated that the PROX reactor required to scrub the

carbon monoxide from the stream exiting the reformer is larger than the

reformer, increasing the attractiveness of alternative carbon monoxide removal

methods such as a palladium membrane.[1273] Plus, some loss in efficiency is

incurred as some of the hydrogen is converted to water in the PROX reactor

(although the catalyst is quite selective). Using a 70 mm thick Pd/Ta/Pd

composite membrane, Gubler et al. purified hydrogen produced by an

autothermal reformer operating at 300�C.[1287] Moss et al. purified methanol

reformate through a Pd/V/Pd membrane for use in a PEM fuel cell.[197,227]

Adsorption of reactants such as carbon monoxide and water on a

palladium membrane can inhibit hydrogen permeation through it under typical

water–gas shift conditions ( < 300�C and > 1 atm).[275,332,352,454,456,1245,1308,

1309] However, steam appears to adsorb more strongly than carbon monoxide

at 380�C.[352] Lægsgaard Jørgensen et al. conducted methane or methanol

steam reforming in a PMR at 20 atm and studied the effect of carbon

monoxide on membrane reactor performance.[1037,1310] A 4 mm thick palladium

composite membrane was used that had a hydrogen/nitrogen selectivity of 128

followed by a methanation reactor to further remove carbon monoxide. The

overall efficiency of the methanol steam-reformer/fuel-cell power system was

estimated to be 42–48%. Han et al. observed that conditions during the steam

reforming of methanol reduced the hydrogen flux through a PdCu40

membrane by � 25%.[1285] In a membrane reactor, the catalyst can also

contribute to concentration polarization that further reduces hydrogen flux

through the membrane.[275]

3.3 Recovery and Separation of Hydrogen Isotopes

It is a general practice that hydrogen isotopes in streams used or produced

in nuclear reactors and facilities are recovered and stored as metal hydrides, or

oxidized, and stored on molecular sieves. Palladium membranes have been

used for both recovery and separation of the three radioisotopes of hydrogen,

protium (H2), deuterium (D2), and tritium (T2) for over 40 years.[21,141,147,432,

433,485,1311 – 1316] Tubular configurations with relatively thick walls (>100 mm)

are commonly used to obtain complete separation of hydrogen isotopes from
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impurities. Metal membranes are also useful for extracting or injecting

hydrogen into nuclear reactor coolant or fusion reactor breeder blan-

kets.[484,1166,1317,1318] Palladium membranes are used to separate hydrogen

from gas streams produced during tritium handling operations related to

breeder or thermonuclear fusion reactors.[1319–1322] In fact, palladium

membranes can be used as probes to measure the hydrogen concentration

in a liquid or gas stream.[5,140,1323–1330] Buxbaum et al. studied the feasibility

of using electroless palladium coated (2 mm on each side) zirconium tubes

for extraction of tritium from the lithium-containing breeder blanket of a

fusion reactor.[333,888]

The three isotopes of hydrogen (referred to here generically as ‘‘hy-

drogen’’) have different thermodynamic properties in metals.[416,593,1331–1342]

In fact, separating the isotopes from each other using palladium and its alloys

is feasible in either chromatographic columns or multi-stage cascades of

membranes due to differences in solubility and diffusivity, particularly the

variation in hydride dissociation pressures.[40,147,559,611,621,622,650,1343 – 1351]

Depending on alloy composition and operating conditions the isotopic sepa-

ration factor (ratio of hydrogen isotope fluxes through a membrane in a mixed-

gas system) usually ranges between 1–2 for hydrogen/deuterium and 2–3 for

hydrogen/tritium.[40,207,250,282,589,647,650,1162,1311,1334,1350,1352–1361] Larger fac-

tors have been obtained in electrochemical systems.[1362]

Extensive tests have been performed on the long-term operation of

palladium alloy membranes and the effect of impurities on permeab-

ility.[1352,1353] Penzhorn et al. determined that methane poisons Pd–Ag

membranes at 360�C, especially tritiated methane.[282] Air treatment at 350�C
restored permeability. However, mercury (from a vacuum pump for example)

can weaken and destroy palladium membranes while most other mechanical

failures occur at the braze between the palladium tube and the connecting

metal plumbing.[485]

Tritium decays with emission of a b-particle (electron) and a helium

molecule (3He). The electron can cause degradation of certain materials such

as polymers and the helium can become trapped inside metals. It has been

shown that during operation of palladium membranes for several years, the b-

radiation has no effect but helium builds up inside the metal.[649,1353,1363,1364]

Consequently, nuclear decay may not pose a problem until higher operating

temperatures are used (� 400�C) where increased migration of vacancies in

the metal can result in precipitation of helium bubbles that weaken the

membrane.[649] In accelerated aging tests, reduced plasticity and hardening

have been observed although there were no structural changes.[1365]

The fuel cycle of the International Thermonuclear Experimental Reactor

(ITER) will require hydrogen recovery from the plasma exhaust gas and

isotope separation.[26,27,30,485,649,1303,1366 – 1370] To maintain the proper deuter-

70 PAGLIERI AND WAY

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
2
4
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

ium/tritium gas composition for the fusion reaction, the isotopes will be

extracted from the torus and recycled or stored while the helium waste product

or ‘‘ash’’ will be vented. Pd–Ag membranes (� 1 m2 membrane area) are

expected to recover the hydrogen isotopes while cryogenic distillation will be

used to separate them from each other.[485,1371]

One scheme for hydrogen recovery from the plasma exhaust of a fusion

reactor proposes to use the effect of ‘‘superpermeability’’ to facilitate hy-

drogen isotope transport across a metal membrane.[1372–1382] High probability

of hydrogen diffusion (not necessarily high fluxes) through a metal are

possible when using hyperthermal atomic hydrogen obtained by dissociation at

low pressure on a hot filament or by a microwave.[215,1383] The process is

highly sensitive to the surface state of the metal.[356,1378,1384–1386]

Hydrogen isotopes can be recovered from contaminated (tritiated) water in

a PMR via the water–gas shift reaction,[20–22,24,28,689,1301–1303,1322,1367,1387–1390]

HTO þ CO ! HT þ CO2ðT � tritiumÞ:

A slight excess of carbon monoxide makes the H2O/CO ratio less than

one to drive the conversion of water. This is assisted by hydrogen permeation

through a 178 mm thick PdAg23 membrane with vacuum on the permeate side.

The relatively thick membrane is required to obtain essentially perfect

selectivity for hydrogen. Tritiated water will break through if not enough

carbon monoxide is used while excess results in the formation of tritiated

methane that then has to be scrubbed from the effluent. A second PMR stage

can also be used to further reduce the water concentration to the allow-

able level for environmental release. Pt/alumina catalyst is preferred because

of its slow rate of carbon formation at the low H2O/CO ratios used

( < 1).[172,1035,1390] Electrolytic diffusers are also used to recover hydrogen

isotopes from deuterated or tritiated water.[585,1352,1391]

3.4 Palladium Membranes and the Hydrogen Economy

Aside from fuel cell systems, membranes may also assist in harnessing

energy from renewable sources or play a pivotal role in seasonal energy

storage for the so-called hydrogen economy where hydrogen is the energy

intermediate or carrier.[355,684,1059,1175,1178,1272,1279,1392–1396] Possible applica-

tions include the storage of electrical energy (from hydroelectric, wind,

photovoltaic, or nuclear power) in chemical form by using a palladium

membrane reactor and a reversible hydrogenation reaction or through direct

production of hydrogen electrolytically from water.[5,70,145,355,826,1397] Energy

would be stored during peak electrical generating times such as in the Spring

PALLADIUM MEMBRANE RESEARCH 71

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
2
4
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

when water flows are high or at night when electrical supply from power

plants exceeds demand.

Membranes may become part of a system for the derivation of hydro-

gen from solar energy (perhaps in a solar furnace) or from thermochemical

water splitting.[313,1001,1052,1398,1399] For instance, Herzog and Glaubitz

obtained hydrogen from water by a metal/metal-hydride process using a

PdAg25/V/Pd–Cu membrane.[355] Hydrogen can also be recovered through

pyrolysis or gasification from wastes that are typically burned such as

biomass, crop residues, landfill gas, or industrial byproducts like black liquor

(from paper making).[1036,1279,1400] For example, Arai et al. reacted ethanol (a

product of waste fermentation) and water over a titania coated palladium foil

to produce hydrogen under the illumination of a 500 W high pressure

mercury lamp.[1401]

The environmental ramifications of increased energy efficiency through

membrane processes include decreased reliance on non-renewable fossil fuel

energy sources and a corresponding reduction in greenhouse gas emissions

(carbon dioxide) and other pollutants such as nitrogen and sulfur oxides (NOx

and SOx). Unless hydrogen was produced from renewable sources as opposed

to fossil fuels, reduction in carbon dioxide generation would come primarily

from increased efficiency. In any case, the use of hydrogen as a transportation

fuel (or using a hydrogen producing membrane/reformer system) would

eliminate small point-source emissions of pollutants. Palladium membranes

can also assist in carbon sequestration by separating hydrogen from a carbon

dioxide rich stream. Carbon dioxide fixation to carbon has also been carried

out directly in a palladium membrane reactor.[1402]

3.5 Novel Applications for Palladium Membranes

Many diverse uses for palladium membranes have been suggested.

These include incorporation into a heat pump,[89,1403–1405] as a focusing

injector for gas chromatography,[851,1406–1409] and for determining the

hydrogen partial pressure in a gas or liquid.[5,140,1326–1330] For instance, Ford

et al. measured hydrogen produced by microbes attached to the membrane

surface.[1410] Heat pumps can concentrate and transfer energy from wasted

heat into more useful higher temperatures. A heat pump based on reversible

cyclohexane hydrogenation/dehydrogenation has been developed where the

endothermic dehydrogenation extracts energy from the waste-heat stream and

the exothermic hydrogenation returns the energy where it is needed at a

higher temperature.[89,1403–1405] A palladium membrane increases the effi-

ciency of the process by increasing the pressure at which the reaction can

take place.[1397]
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4. CONCLUDING REMARKS

Even as the amount of palladium in composite membranes continues to

shrink, several challenges remain. Embrittlement of palladium hydrides can be

overcome by the use of alloy membranes. However, the problem of coking

(and other contamination) during reaction remains, as does the necessity to

consistently fabricate extremely thin (and continuous) palladium films in order

to decrease the capital outlay for an industrial module. Regardless of these

difficulties, the promise of savings through the use of palladium composite

membranes for multifunctional intensification of hydrogen separation and

reaction processes warrants continued research towards a mature form of the

technology.[46,1411] The outlook for this prospect is positive since each year

cross-disciplinary progress is made towards thinner and longer lasting pal-

ladium membranes.
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336. Züchner, H.; Boes, N. SIMS—Untersuchungen zum Einflub von
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F. Hydrogen Permeation Membrane. US Patent 4,699,637, Oct. 13,

1987.

935. Poschmann, T. Verwendung einer Metallmembranfolie aus einer Palla-

diumlegierung zur Wasserstoffabtrennung. EP Patent 908536A2, 1998.

936. More effective hydrogen filters. Mech. Eng. 1996, 118 (3), 14.
937. Winkelmann, U.; Schulten, R.; Weirich, W.; Kügler, B.; Lücke, L.;
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1284. Höhlein, B.; Boe, M.; Bøgild-Hansen, J.; Bröckerhoff, P.; Colsman, G.;
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